Solar Energy News  
MICROSAT BLITZ
NASA tests tiny satellites to track global storms
by Staff Writers
Pasadena CA (JPL) Sep 26, 2018

RainCube (Radar in a CubeSat).

How many times have you stepped outside into a surprise rainstorm without an umbrella and wished that weather forecasts were more accurate?

A satellite no bigger than a shoebox may one day help. Small enough to fit inside a backpack, the aptly named RainCube (Radar in a CubeSat) uses experimental technology to see storms by detecting rain and snow with very small instruments. The people behind the miniature mission celebrated after RainCube sent back its first images of a storm over Mexico in a technology demonstration in August. Its second wave of images in September caught the first rainfall of Hurricane Florence.

The small satellite is a prototype for a possible fleet of RainCubes that could one day help monitor severe storms, lead to improving the accuracy of weather forecasts and track climate change over time. "We don't have any way of measuring how water and air move in thunderstorms globally," said Graeme Stephens, director of the Center of Climate Sciences at NASA's Jet Propulsion Laboratory in Pasadena, California. "We just don't have any information about that at all, yet it's so essential for predicting severe weather and even how rains will change in a future climate."

RainCube is a type of "tech demo," an experiment to see if shrinking a weather radar into a low-cost, miniature satellite could still provide a real-time look inside storms. RainCube "sees" objects by using radar, much as a bat uses sonar. The satellite's umbrella-like antenna sends out chirps, or specialized radar signals, that bounce off raindrops, bringing back a picture of what the inside of the storm looks like.

Engineers like Principal Investigator Eva Peral had to figure out a way to help a small spacecraft send a signal strong enough to peer into a storm. "The radar signal penetrates the storm, and then the radar receives back an echo," said Peral. "As the radar signal goes deeper into the layers of the storm and measures the rain at those layers, we get a snapshot of the activity inside the storm."

Seeing the Bigger Picture
RainCube was deployed into low-Earth orbit from the International Space Station in July. The first images it sent back were from an area above Mexico, where it took a snapshot of a developing storm in August.

"There's a plethora of ground-based experiments that have provided an enormous amount of information, and that's why our weather forecasts nowadays are not that bad," said Simone Tanelli, the co-investigator for RainCube. "But they don't provide a global view. Also, there are weather satellites that provide such a global view, but what they are not telling you is what's happening inside the storm. And that's where the processes that make a storm grow and/or decay happen."

But RainCube is not meant to fulfill a mission of tracking storms all by itself. It is just the first demonstration that a mini-rain radar could work.

Because RainCube is miniaturized, making it less expensive to launch, many more of the satellites could be sent into orbit. Flying together like geese, they could track storms, relaying updated information on them every few minutes. Eventually, they could yield data to help evaluate and improve weather models that predict the movement of rain, snow, sleet and hail.

"We actually will end up doing much more interesting insightful science with a constellation rather than with just one of them," Stephens said. "What we're learning in Earth sciences is that space and time coverage is more important than having a really expensive satellite instrument that just does one thing."

And that future seems closer now that RainCube and other Earth-observing CubeSats like it have proved they can work.

"What RainCube offers on the one hand is a demonstration of measurements that we currently have in space today," said Stephens. "But what it really demonstrates is the potential for an entirely new and different way of observing Earth with many small radars. That will open up a whole new vista in viewing the hydrological cycle of Earth."

RainCube is a technology-demonstration mission to enable Ka-band precipitation radar technologies on a low-cost, quick-turnaround platform. It is sponsored by NASA's Earth Science Technology Office through the InVEST-15 program. JPL is working with Tyvak Nanosatellite Systems, Inc. in Irvine, California, to fly the RainCube mission.


Related Links
RainCube (Radar in a CubeSat)
Microsat News and Nanosat News at SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MICROSAT BLITZ
UCLA students launch project that's out of this world
Los Angeles CA (SPX) Sep 14, 2018
Five years ago, a group of UCLA undergrads came together with a common goal - to build a small satellite and launch it into space. In the years since, more than 250 students - many of whom are now UCLA graduate students and alumni - have been the mechanical engineers, software developers, thermal and power testers, electronics technicians, mission planners and fabricators of the twin Electron Losses and Fields Investigation CubeSats, known as ELFIN. Although UCLA has been building space instrument ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MICROSAT BLITZ
Photosynthesis discovery could help next-gen biotechnologies

After 150 years, a breakthrough in understanding the conversion of CO2 to electrofuels

New method more than doubles sugar production from plants

WELTEC BIOPOWER at the EnergyDecentral

MICROSAT BLITZ
Amazon aims to make Alexa assistant bigger part of users' lives

Spray coated tactile sensor on a 3D surface for robotic skin

'Robotic skins' turn everyday objects into robots

Russian scientists send FEDOR robot to Roscosmos for launch

MICROSAT BLITZ
Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

MICROSAT BLITZ
Drivers for Uber, Lyft see incomes fall as participation jumps

Renault-Nissan alliance takes Google Android for a drive

Ford executive says may boost production in China to avoid tariffs

Drivers see red over Oslo's green 'war on cars'

MICROSAT BLITZ
New battery gobbles up carbon dioxide

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

A novel approach of improving battery performance

Laser ignites hot plasma

MICROSAT BLITZ
Framatome to deliver ATRIUM 11 fuel to Talen Energy's Susquehanna Station

US Nuclear Lab Building Micro-Reactor That Can Power an Army Brigade

Framatome and Entergy sign contract for accident tolerant fuel coated cladding delivery to ANO

Nuclear energy may see role wane, UN agency says

MICROSAT BLITZ
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

MICROSAT BLITZ
Once majestic Atlantic Forest 'empty' after 500 years of over-exploitation

Coastal wetlands will survive rising seas, but only if we let them

Coal plant offsets with carbon capture means covering 89 percent of the US in forests

Indigenous peoples, key to saving forests, catch a break









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.