Solar Energy News
TECH SPACE
NASA's First Two-way End-to-End Laser Communications System
The Laser Communications Relay Demonstration (LCRD) launched in December 2021. Together, LCRD and ILLUMA-T will complete NASA's first bi-directional end-to-end laser communications system.
NASA's First Two-way End-to-End Laser Communications System
by Kendall Murphy and Katherine Schauer for GSFC News
Greenbelt MD (SPX) Oct 26, 2023

NASA is demonstrating laser communications on multiple missions - showcasing the benefits infrared light can have for science and exploration missions transmitting terabytes of important data. The International Space Station is getting a "flashy" technology demonstration this November. The ILLUMA-T (Integrated Laser Communications Relay Demonstration Low Earth Orbit User Modem and Amplifier Terminal) payload is launching to the International Space Station to demonstrate how missions in low Earth orbit can benefit from laser communications.

Laser communications uses invisible infrared light to send and receive information at higher data rates, providing spacecraft with the capability to send more data back to Earth in a single transmission and expediting discoveries for researchers.

Managed by NASA's Space Communications and Navigation (SCaN) program, ILLUMA-T is completing NASA's first bi-directional, end-to-end laser communications relay by working with the agency's LCRD (Laser Communications Relay Demonstration). LCRD launched in December 2021 and is currently demonstrating the benefits of laser communications from geosynchronous orbit by transmitting data between two ground stations on Earth in a series of experiments.

Some of LCRD's experiments include studying atmospheric impact on laser signals, confirming LCRD's ability to work with multiple users, testing network capabilities like delay/disruption tolerant networking (DTN) over laser links, and investigating improved navigation capabilities.

Once ILLUMA-T is installed on the space station's exterior, the payload will complete NASA's first in-space demonstration of two-way laser relay capabilities.

How It Works:
ILLUMA-T's optical module is comprised of a telescope and two-axis gimbal which allows pointing and tracking of LCRD in geosynchronous orbit. The optical module is about the size of a microwave and the payload itself is comparable to a standard refrigerator.

ILLUMA-T will relay data from the space station to LCRD at 1.2 gigabits-per-second, then LCRD will send the data down to optical ground stations in California or Hawaii. Once the data reaches these ground stations, it will be sent to the LCRD Mission Operations Center located at NASA's White Sands Complex in Las Cruces, New Mexico. After this, the data will be sent to the ILLUMA-T ground operations teams at the agency's Goddard Space Flight Center in Greenbelt, Maryland. There, engineers will determine if the data sent through this end-to-end relay process is accurate and of high-quality.

"NASA Goddard's primary role is to ensure successful laser communications and payload operations with LCRD and the space station," said ILLUMA-T Deputy Project Manager Matt Magsamen. "With LCRD actively conducting experiments that test and refine laser systems, we are looking forward to taking space communications capabilities to the next step and watching the success of this collaboration between the two payloads unfold."

Once ILLUMA-T transmits its first beam of laser light through its optical telescope to LCRD, the end-to-end laser communications experiment begins. After its experimental phase with LCRD, ILLUMA-T could become an operational part of the space station and substantially increase the amount of data NASA can send to and from the orbiting laboratory.

Transmitting data to relay satellites is no new feat for the space station. Since its completion in 1998 the orbiting laboratory has relied on the fleet of radio frequency relay satellites known as NASA's Tracking and Data Relay Satellites, which are part of the agency's Near Space Network. Relay satellites provide missions with constant contact with Earth because they can see the spacecraft and a ground antenna at the same time.

Laser communications could be a game-changer for researchers on Earth with science and technology investigations aboard the space station. Astronauts conduct research in areas like biological and physical sciences, technology, Earth observations, and more in the orbiting laboratory for the benefit of humanity. ILLUMA-T could provide enhanced data rates for these experiments and send more data back to Earth at once. In fact, at 1.2 Gbps, ILLUMA-T can transfer the amount of data equivalent to an average movie in under a minute.

The ILLUMA-T / LCRD end-to-end laser communications relay system is one small step for NASA, but one giant leap for space communications capabilities. Together with previous and future demonstrations, NASA is showcasing the benefits laser communications systems can have for both near-Earth and deep space exploration.

The goal of these demonstrations is to integrate laser communications as a capability within NASA's space communications networks: the Near Space Network and Deep Space Network. If you are a mission planner interested in using laser communications, please reach out to [email protected].

The ILLUMA-T payload is funded by the Space Communications and Navigation (SCaN) program at NASA Headquarters in Washington. ILLUMA-T is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. Partners include the International Space Station program office at NASA's Johnson Space Center in Houston and the Massachusetts Institute of Technology (MIT) Lincoln Laboratory in Lexington, Massachusetts.

LCRD is led by Goddard and in partnership with NASA's Jet Propulsion Laboratory in Southern California and the MIT Lincoln Laboratory. LCRD is funded through NASA's Technology Demonstration Missions program, part of the Space Technology Mission Directorate, and the Space Communications and Navigation (SCaN) program at NASA Headquarters in Washington.

Related Links
Space Communications and Navigation (SCaN)
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Tightbeam tech set to revolutionize Global Marine Internet through Aalyria-HICO Partnership
Livermore CA (SPX) Oct 25, 2023
Aalyria Technologies and HICO Investment Group are joining forces to revolutionize maritime communications, having recently signed a Memorandum of Understanding (MOU). The agreement sets forth the scope and aims of a partnership that seeks to introduce Aalyria's Tightbeam high-speed, free-space optics communications systems across the maritime sector in various global regions, including the Middle East, Asia, Europe, Africa, and the Caribbean. Tightbeam technology leverages coherent light laser te ... read more

TECH SPACE
Unlocking sugar to generate biofuels and bioproducts

Breakthrough 3D Printing Technique Doubles Solar Fuel Efficiency

Cow manure to synthetic gas: How can we optimize the process?

Lightning strike hits UK biogas facility

TECH SPACE
Biden unveils AI order aiming to 'lead the way' on safety

Rogue wins AFWERX contract for innovative space inspection technology

UN panel to recommend how to govern use of AI

UK prepares to host global leaders' gathering on AI

TECH SPACE
NREL analysis identifies drivers of offshore wind development

Floating offshore wind could bring billions in value to the west coast, report shows

Samis block Norway govt offices over illegal wind farms

Greta Thunberg protests illegal wind turbines in Norway

TECH SPACE
Charging ahead: Dutch eye boost to 'fast charger' EV network

China's electric bus revolution glides on

Japan's first fully autonomous vehicle suspended

Chinese electric carmaker BYD posts record quarterly profit

TECH SPACE
A step on the way to solid-state batteries

New battery technology could lead to safer, high-energy electric vehicles

South Korea's KERI Develops Pioneering Thermoelectric Technology for Space Probes

Generating clean electricity with chicken feathers

TECH SPACE
Bulgaria to get two US-built nuclear reactors

Electrons are quick-change artists in molten salts, chemists show

Framatome Space: A New Player in Space Exploration and Nuclear Power

France insists on nuclear for 'green' hydrogen

TECH SPACE
Heat pumps can't take the cold? Nordics debunk the myth

In Peru, a small carbon footprint is not a choice

World's available CO2 'budget' for 1.5C smaller than thought: study

COP28 faces debate over controversy-mired carbon credits

TECH SPACE
Oman revives CO2-busting mangroves as climate threat lurks

Reclaiming land stolen in heart of Guatemalan reserve

International summit in Congo mulls future of tropical forests

New study finds hidden trees across Europe: A billion tons of biomass is overlooked today

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.