Solar Energy News  
EARTH OBSERVATION
NASA's TSIS-1 keeps an eye on Sun's power over ozone
by Rani Gran for GSFC News
Greenbelt MD (SPX) Nov 23, 2017


TSIS-1 will be affixed to the International Space Station in December 2017 TSIS-1 operates like a sun flower: it follows the Sun, from the ISS sunrise to its sunset, which happens every 90 minutes. At sunset, it rewinds, recalibrates and waits for the next sunset.

High in the atmosphere, above weather systems, is a layer of ozone gas. Ozone is Earth's natural sunscreen, absorbing the Sun's most harmful ultraviolet radiation and protecting living things below. But ozone is vulnerable to certain gases made by humans that reach the upper atmosphere. Once there, they react in the presence of sunlight to destroy ozone molecules.

Currently, several NASA and National Oceanic and Atmospheric Administration (NOAA) satellites track the amount of ozone in the upper atmosphere and the solar energy that drives the photochemistry that creates and destroys ozone. NASA is now ready to launch a new instrument to the International Space Station that will provide the most accurate measurements ever made of sunlight as seen from above Earth's atmosphere - an important component for evaluating the long-term effects of ozone-destroying chemistry.

The Total and Spectral solar Irradiance Sensor (TSIS-1) will measure the total amount of sunlight that reaches the top of Earth's atmosphere and how that light is distributed between different wavelengths, including ultraviolet wavelengths that we cannot sense with our eyes, but are felt by our skin and harmful to our DNA.

This is not the first time NASA has measured the total light energy from the Sun. TSIS-1 succeeds previous and current NASA missions to monitor incoming sunlight with technological upgrades that should improve stability, provide three times better accuracy and lower interference from other sources of light, according to Candace Carlisle, TSIS-1 project manager at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

"We need to measure the full spectrum of sunlight and the individual wavelengths to evaluate how the Sun affects Earth's atmosphere," said Dong Wu, TSIS-1 project scientist at Goddard.

TSIS-will see more than 1,000 wavelength bands from 200 to 2400 nanometers. The visible part of the spectrum our eyes see goes from about 390 nanometers (blue) to 700 nanometers (red). A nanometer is one billionth of a meter.

"Each color or wavelength of light affects Earth's atmosphere differently," Wu said.

TSIS-1 will see different types of ultraviolet (UV) light, including UV-B and UV-C. Each plays a different role in the ozone layer. UV-C rays are essential in creating ozone. UV-B rays and some naturally occurring chemicals regulate the abundance of ozone in the upper atmosphere.

The amount of ozone is a balance between these natural production and loss processes. In the course of these processes, UV-C and UV-B rays are absorbed, preventing them from reaching Earth's surface and harming living organisms. Thinning of the ozone layer has allowed some UV-B rays to reach the ground.

In the 1970s, scientists theorized that certain human-made chemicals found in spray cans, air conditioners and refrigerators could throw off the natural balance of ozone creation and depletion and cause an unnatural depletion of the protective ozone. In the 1980s, scientists observed ozone loss consistent with the concentrations of these chemicals and confirmed this theory.

Ozone loss was far more severe than expected over the South Pole during the Antarctic spring (fall in the United States), a phenomenon that was named "the Antarctic ozone hole." The discovery that human-made chemicals could have such a large effect on Earth's atmosphere brought world leaders together.

They created an international commitment to phase out ozone-depleting chemicals called the Montreal Protocol, which was universally ratified in 1987 by all countries that participate in the United Nations, and has been updated to tighten constraints and account for additional ozone depleting chemicals.

A decade after the ratification of the Montreal Protocol, the amount of human-made ozone-destroying chemicals in the atmosphere peaked and began a slow decline. However, it takes decades for these chemicals to completely cycle out of the upper atmosphere, and the concentrations of these industrially produced molecules are not all decreasing as expected, while additional, new compounds are being created and released.

More than three decades after ratification, NASA satellites have verified that ozone losses have stabilized and, in some specific locations, have even begun to recover due to reductions in the ozone-destroying chemicals regulated under the Montreal Protocol.

As part of their work in monitoring the recovery of the ozone hole, scientists use computer models of the atmosphere that simulate the physical, chemical and weather processes in the atmosphere.

These atmospheric models can then take input from ground and satellite observations of various atmospheric gases, both natural and human-produced, to help predict ozone layer recovery.

They test the models by simulating past changes and then compare the results with satellite measurements to see if the simulations match past outcomes. To run the best possible simulation, the models also need accurate measurements of sunlight across the spectrum.

"Atmospheric models need accurate measurements of sunlight across the ultraviolet spectrum to model the ozone layer correctly," said Peter Pilewskie, TSIS-1 lead scientist at the Laboratory for Atmospheric and Space Physics in Boulder, Colorado. Scientists have learned that variations in UV radiance produce significant changes in the results of the computer simulations.

Overall, solar energy output varies by approximately 0.1 percent - or about 1 watt per square meter between the most and least active part of an 11-year solar cycle. The solar cycle is marked by the alternating high and low activity periods of sunspots, dark regions of complex magnetic activity on the Sun's surface.

While UV light represents a tiny fraction of the total sunlight that reaches the top of Earth's atmosphere, it fluctuates much more, anywhere from 3 to 10 percent, a change that in turn causes small changes in the chemical composition and thermal structure of the upper atmosphere.

That's where TSIS-1 comes in. "[TSIS] measurements of the solar spectrum are three times more accurate than previous instruments," said Pilewskie. Its high quality measurements will allow scientists to fine tune their computer models and produce better simulations of the ozone layer's behavior - as well as other atmospheric processes influenced by sunlight, such as the movement of winds and weather that are.

TSIS-1 joins a fleet of NASA's Earth-observing missions that monitor nearly every aspect of the Earth system, watching for any changes in our environment that could harm life.

For more than five decades, NASA has used the vantage point of space to understand and explore our home planet, improve lives and safeguard our future by deploying space based sensors like TSIS-1. NASA's Goddard Space Flight Center has overall responsibility for the development and operation of TSIS-1 on International Space Station as part of the Earth Systematic Missions program. The Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder, under contract with NASA, is responsible for providing the TSIS-1 measurements and ensuring their availability to the scientific community.

EARTH OBSERVATION
Ozone ups and downs
Paris (ESA) Nov 16, 2017
Climate scientists studying three decades of ozone measurements from seven satellites see a positive trend in global recovery thanks to international efforts to curb ozone-depleting substances. The part of Earth's atmosphere with high concentrations of ozone gas protects life on Earth from the Sun's ultraviolet radiation. However, pollutants can break down ozone, thinning this ozone layer ... read more

Related Links
Total and Spectral solar Irradiance Sensor
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
The water world of ancient photosynthetic organisms

Surrey develops new 'supercatalyst' to recycle carbon dioxide and methane

Coffee set to power London buses in green initiative

Sandia speeds transformation of biofuel waste into wealth

EARTH OBSERVATION
Speedy collision detector could make robots better human assistants

New technology makes artificial intelligence more private and portable

Calls mount for action on 'killer robots' after UN talks

New Challenges Await Competitors in NASA's 25th Annual Human Exploration Rover Challenge

EARTH OBSERVATION
New wind farm in service off the British coast

End tax credits for wind energy, Tennessee Republican says

New York sets high bar for wind energy

Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

EARTH OBSERVATION
Driverless, electric future just round the corner for urban cars

Hydrogen cars for the masses one step closer to reality

'Robo-taxis' hold promise, and perils, for automakers

Singapore to deploy driverless buses from 2022: minister

EARTH OBSERVATION
Reusing waste energy with 2-D electron gas

A new way to store thermal energy

New computational method provides optimized design of wind up toys

Renaissance of the iron-air battery

EARTH OBSERVATION
Lightbridge and AREVA NP Sign Agreements to Immediately Advance Fuel Development

UK made grave errors over Hinkley nuclear project: MPs

Belarus nuclear power plant stirs fears in Lithuania

Swiss nuclear plant finds defective tubes from France's Areva

EARTH OBSERVATION
Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

EARTH OBSERVATION
Brazil exports murder-tainted illegal logging: Greenpeace

Amazon's recovery from forest losses limited by climate change

Poland says compliant with EU court order against ancient forest logging

How to manage forest pests in the Anthropocene? Bring theory









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.