![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Kawasaki, Japan (SPX) Feb 11, 2020
Panasonic Corporation has achieved the world's highest energy conversion efficiency of 16.09% for a perovskite solar module (Aperture area 802 cm2: 30 cm long x 30 cm wide x 2 mm thick) by developing lightweight technology using a glass substrate and a large-area coating method based on inkjet printing. This was carried out as part of the project of the New Energy and Industrial Technology Development Organization (NEDO), which is working on the "Development of Technologies to Reduce Power Generation Costs for High-Performance and High-Reliability Photovoltaic Power Generation" to promote the widespread adoption of solar power generation. This inkjet-based coating method that can cover a large area reduces manufacturing costs of modules. In addition, this large-area, lightweight, and high-conversion efficiency module allows for generating solar power highly efficiently at locations where conventional solar panels were difficult to install, such as facades. Going forward, NEDO and Panasonic continue to improve perovskite layer materials, aiming to achieve high efficiency comparable to that of crystalline silicon solar cells and establish technologies for practical application in new markets.
1. Background Perovskite solar cells*1 have a structural advantage as their thickness including a power generation layer is only one-hundredth of that of crystalline silicon solar cells, so that perovskite modules can be lighter in weight than crystalline silicon modules. The lightweight property enables various placing styles such as installing on facades and windows by using transparent conductive electrode, which can lead to the wide-spread adoption of Net Zero Energy Buildings (ZEB*2). Further, as each layer can be coated onto the substrates directly, they can be produced cheaper, compared to the conventional process technology. That is why perovskite solar cells are getting attention as next generation solar cells. On the other hand, despite perovskite technology achieved 25.2%*3 power conversion efficiency, comparable to crystalline silicon solar cells, in small size cells, it was very difficult to deposit materials uniformly all over large-area by conventional technology. As a result, the power conversion efficiency was inclined to decrease. Against this background, the NEDO is working on the "Development of Technologies to Reduce Power Generation Costs for High-Performance and High-Reliability Photovoltaic Power Generation"*4 project to promote the further adoption of solar power generation. As part of this project, Panasonic has developed a lightweight technology using glass substrates and a large-area coating method based on inkjet method including ink producing and tuning applied to the substrate of perovskite solar cell module. Through these technologies, Panasonic has achieved the world's highest energy conversion efficiency of 16.09%*5 for the perovskite solar cell module (aperture area 802 cm 2: 30 cm long x 30 cm wide x 2 mm thick). In addition, the adoption a large-area coating method using inkjet method in the manufacturing process also enables cost reduction, and the large-area, lightweight, and high-conversion efficiency characteristics of this module enables high-efficiency solar power generation at locations where conventional solar panels were difficult to install, such as facades. By improving perovskite layer materials, Panasonic aims to achieve high efficiency comparable to that of crystalline silicon solar cells and establish technologies for practical application in new markets.
2. Achievement
Point of technical development
(1) Improving component of perovskite precursor for suitable for ink-jet coating
(2) Control for concentration, coating amount and coating speed of perovskite ink By optimizing these technologies through coating process in each layer formation, Panasonic succeeded in enhancing crystal growth and improving the uniformity for thickness and crystal layer. As a result, they achieved the power conversion efficiency of 16.09% and took a step forward to practical application.
3. Plan afterwards These results have been published at IPEROP20 (Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics) being held in Tsukuba International Conference Center.
![]() ![]() Hungarian 150MW solar power plant project obtains $125m investment proposal Orlando FL (SPX) Feb 07, 2020 With the EU raising the price of lignite in an effort to reduce greenhouse gases and fight against climate change, the Hungarian government has decided to turn toward renewable energy as a source of power. With a view to increasing solar panels from 500MW to 30,000MW by 2022, Hungary is seeking to step away from coal and other fossil fuels towards more sustainable energy sources. The 150MW (megawatt) project will be split into three groundmounted 50MW solar plants in targeted areas of the country ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |