. Solar Energy News .




.
CHIP TECH
NIST measures key property of potential spintronic material
by Staff Writers
Washington DC (SPX) Oct 24, 2011

Manganite oxide lattices (purple) doped with lanthanum (magenta) and strontium (green) have potential for use in spintronic memory devices, but their usual disorderly arrangement (left) makes it difficult to explore their properties. The ANL/NIST team's use of a novel orderly lattice (right) allowed them to measure some of the material's fundamental characteristics. Credit: Argonne National Laboratory.

An advanced material that could help bring about next-generation "spintronic" computers has revealed one of its fundamental secrets to a team of scientists from Argonne National Laboratory (ANL) and the National Institute of Standards and Technology (NIST).

The material, constructed of two different compounds, might one day allow computers to use the magnetic spin of electrons, in addition to their charge, for computation. A host of innovations could result, including fast memory devices that use considerably less power than conventional systems and still retain data when the power is off.

The team's effort not only demonstrates that the custom-made material's properties can be engineered precisely, but in creating a virtually perfect sample of the material, the team also has revealed a fundamental characteristic of devices that can be made from it.

Team members from ANL began by doing something that had never been done before-engineering a highly ordered version of a magnetic oxide compound that naturally has two randomly distributed elements: lanthanum and strontium. Stronger magnetic properties are found in those places in the lattice where extra lanthanum atoms are added.

Precise placement of the strontium and lanthanum within the lattice can enable understanding of what is needed to harness the interaction of the magnetic forces among the layers for memory storage applications, but such control has been elusive up to this point.

"These oxides are physically messy to work with, and until very recently, it was not possible to control the local atomic structure so precisely," says Brian Kirby, a physicist at the NIST Center for Neutron Research (NCNR). "Doing so gives us access to important fundamental properties, which are critical to understand if you really want to make optimal use of a material."

The team members from ANL have mastered a technique for laying down the oxides one atomic layer at a time, allowing them to construct an exceptionally organized lattice in which each layer contains only strontium or lanthanum, so that the interface between the two components could be studied.

The NIST team members then used the NCNR's polarized neutron reflectometer to analyze how the magnetic properties within this oxide lattice changed as a consequence of the near-perfect placement of atoms.

They found that the influence of electrons near the additional lanthanum layers was spread out across three magnetic layers in either direction, but fell off sharply further away than that.

Tiffany Santos, lead scientist on the study from ANL, says that the measurement will be important for the emerging field of oxide spintronics, as it reveals a fundamental size unit for electronic and magnetic effects in memory devices made from the material.

"For electrons to share spin information-something required in a memory system-they will need to be physically close enough to influence each other," Kirby says. "By ordering this material in such a precise way, we were able to see just how big that range of influence is."

T. S. Santos, B. J. Kirby, S. Kumar, S. J. May, J. A. Borchers, B. B. Maranville, J. Zarestky, S. G. E. te Velthuis, J. van den Brink and A. Bhattacharya. Delta doping of ferromagnetism in antiferromagnetic manganite superlattices. Physical Review Letters, Week ending Oct. 14, 2011, 107, 167202 (2011), DOI: 10.1103/PhysRevLett.107.167202.

Related Links
National Institute of Standards and Technology (NIST)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Superlattice Cameras Add More 'Color' to Night Vision
Evanston IL (SPX) Oct 24, 2011
Recent breakthroughs have enabled scientists from the Northwestern University's Center for Quantum Devices to build cameras that can see more than one optical waveband or "color" in the dark. The semiconducting material used in the cameras - called type-II superlattices - can be tuned to absorb a wide range of infrared wavelengths, and now, a number of distinct infrared bands at the same t ... read more


CHIP TECH
Global Biofuels Market Value to Double by 2021

FuturaGene and Guangxi Academy of Sciences to Develop Sustainable Biofuel Processes

MixAlco Voted Most Transformative Technology of 2011

Codexis and Raizen to Develop First Generation Ethanol

CHIP TECH
Robotic bug gets wings, sheds light on evolution of flight

Tokyo tech fair opens with robotic clapping of hands

Robot biologist solves complex problem from scratch

Robot biologist solves complex problem from scratch

CHIP TECH
Vestas receives 99MW order for Texas wind-energy project

GE invests in Indian wind power

Euro Bank: Wind policy 'direction' needed

Natural Power US to act as Owner's Engineer on 2.1GW Wyoming wind farm

CHIP TECH
Nissan eyes 1.5 million electric cars by 2016

Saab owner breaks off Chinese funding deal: company

Electromobility: New Components Going for a Test Run

What makes tires grip the road on a rainy day?

CHIP TECH
Electrochemistry controlled with a plasma electrode

Ukraine: Gas deal means Europe security

Using new technique, scientists uncover a delicate magnetic balance for superconductivity

Saudi royals face succession uncertainties

CHIP TECH
Giant flakes make graphene oxide gel

Amorphous diamond, a new super-hard form of carbon created under ultrahigh pressure

Molecular Depth Profiling Modeled Using Buckyballs and Low-Energy Argon

New form of superhard carbon observed

CHIP TECH
California approves carbon cap-and-trade

China warns of winter power shortage

Links in the chain: Global carbon emissions and consumption

Serbia signs power plant deal with China

CHIP TECH
Bolivia natives, president in talks stand-off

Bolivia cancels controversial Amazon highway

"Albedo effect" in forests can cause added warming, bonus cooling

Bolivian natives, president in talks stand-off


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement