Solar Energy News  
TIME AND SPACE
NRL astrophysicist probes theory of black-hole accretion
by Staff Writers
Washington DC (SPX) Jun 29, 2016


The Atacama Large Millimeter/submillimeter Array (ALMA) is an astronomical interferometer of radio telescopes in the Atacama Desert of northern Chile. The ALMA radio telescope is tuned to higher frequencies of radio waves, nearly as high as the infrared - type of light we feel as heat - radiated by most objects in the Universe. Called millimeter and submillimeter waves, this type of light is easily scattered away by water vapor in the air. The dry climate and 16,500-foot high altitude of the site in the Chilean Atacama Desert provides ALMA with the right conditions for detecting these faint signals from space. Image courtesy ALMA, European Southern Observatory and C. Malin. For a larger version of this image please go here.

Utilizing the Atacama Large Millimeter/submillimeter Array (ALMA), one of the most powerful telescopes in the world, U.S. Naval Research Laboratory (NRL) astrophysicist Dr. Tracy Clarke and an international team of researchers have peered into the feeding habits of a supermassive black hole and witnessed the first evidence of a new diet.

The black hole, whose mass is nearly 300 million times that of our sun, is on the verge of gulping down massive clumps of cold gas which each contain as much material as a million suns.

Previously, astronomers generally believed that supermassive black holes at the centers of galaxies slowly grazed on a steadfast diet of hot ionized gas from the galaxy's halo.

The new ALMA observations show that under the right intergalactic conditions, the black hole can instead feed on a chaotic downpour of cold, clumpy clouds that have condensed out of the hot gas and plummeted into the heart of the galaxy where the supermassive black hole resides.

These new observations - recently published in a Nature letter led by Dr. Grant Tremblay, Yale Center for Astronomy and Astrophysics - will help recast astronomers models of how supermassive black holes grow through a process known as accretion.

The team of astronomers used ALMA to study an unusually bright cluster of individual galaxies, collectively referred to as Abell 2597, in hopes of mapping the spatial structure and velocity of the cold gas in the system.

Earlier work by Clarke revealed that the hot gas in the core of this cluster is riddled with X-ray cavities excavated by powerful radio jets driven by outbursts from the central supermassive black hole. The ALMA observations were aimed at searching for evidence that the powerful radio jets can also pull cold gas out of the cluster core to stop catastrophic runaway cooling.

"We've known for a long time that black holes at the heart of galaxies can launch powerful jets that travel far beyond the borders of their host galaxy but we really don't understand how this process happens," said Clarke.

In recent years theoretical models have predicted that black holes may grow through so-called cold, chaotic accretion but unambiguous observational evidence of this form of accretion has been elusive, until now.

While studying the ALMA data on the central galaxy in Abell 2597 the team of astronomers discovered something unexpected, the distinct signature of three shadows cast by massive clouds of cold gas raining onto the central supermassive black hole.

Clarke points out that these clouds fall into the core of this galaxy at close to 300 kilometers per second, adding, that "If you could travel at this speed, it would take you about two minutes to circumnavigate the Earth."

These shadows, known as absorption features, are formed when the in-falling clouds pass in front of the bright emission from very near the black hole and block, or absorb, some of that radiation. However, it is likely that there are many more clouds that went undetected by the ALMA observations since the astronomers are only able to probe a small sightline toward the cluster core.

To put these features in perspective, Clark says, "If I were a weather forecaster covering the center of Abell 2597, my weekend forecast for a million years from now would likely be 'cloudy with a chance of rain and explosive outbursts.'"

What Clarke is referring to, is the fact that the clouds are expected to eventually feed a massive outburst from the central supermassive black hole. The outburst will drive a new generation of radio jets into the cluster to evacuate cavities and heat the gas.

Eventually this gas will cool into cold clumps and fall back into the central black hole. This 'feedback cycle' may be essential to maintaining a cosmic balance of heating and cooling in galaxy clusters, the most massive known objects in the Universe.

Astronomers, however, are unable to determine from a single system that these clouds will drive the next outburst and therefore plan next to use ALMA for a broader study of galaxies to determine if this black hole 'diet' is as widespread as theory suggests.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Naval Research Laboratory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Dormant Black Hole Eats Star, Becomes X-Ray Flashlight
College Park MD (SPX) Jun 24, 2016
Roughly 90 percent of the biggest black holes in the known universe are dormant, meaning that they are not actively devouring matter and, consequently, not giving off any light or other radiation. But sometimes a star wanders too close to a dormant black hole and the ensuing feeding frenzy, known as a tidal disruption event, sets off spectacular fireworks. Astronomers from the University o ... read more


TIME AND SPACE
Solar exposure energizes muddy microbes

Chemists find new way to recycle plastic waste into fuel

Bioenergy integrated in the bio-based economy crucial to meet climate targets

New 3-D printed polymer can convert methane to methanol

TIME AND SPACE
Firm unveils 'robot dog' that does the dishes

Robotic motion planning in real-time

Computers eyeing the jobs of sports camera operators

How insights into human learning can foster smarter artificial intelligence

TIME AND SPACE
More wind power added to French grid

How China can ramp up wind power

Scotland investing more in offshore wind

Gamesa, Siemens join forces to create global wind power leader

TIME AND SPACE
Ethics dilemmas may hold back autonomous cars: study

VW to pay $10 bn in US over emissions scandal: source

Electric vehicles just starting to make a splash

Volkswagen places question mark over future of diesel technology

TIME AND SPACE
Coexistence of superconductivity and charge density waves observed

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries

LG Chem's New High Voltage Batteries Now Compatible With Solaredge Storedge

Efficient hydrogen production made easy

TIME AND SPACE
Putin: Russia, China to Step Up Nuclear Energy Cooperation

India to send atomic experts to Namibia

India blames China for stalled nuclear group entry

California nuclear power coming to an end

TIME AND SPACE
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

TIME AND SPACE
Where do rubber trees get their rubber

Significant humus loss in forests of the Bavarian Alps

Botanical diversity unraveled in a previously understudied forest in Angola

Boreal felt lichen set to decline 50 percent in 25 years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.