Solar Energy News  
SOLAR DAILY
NTU Singapore scientists invent 'smart' window material that blocks rays without blocking views
by Staff Writers
Singapore (SPX) Nov 11, 2021

The new energy-saving material for electrochromic (EC) windows blocks ray without compromising views through the window, as it allows up to 90 per cent of visible light to pass through.

An international research team led by scientists from Nanyang Technological University, Singapore (NTU Singapore) has invented a 'smart' window material that controls heat transmission without blocking views, which could help cut the energy required to cool and heat buildings.

Developed by NTU researchers, the new energy-saving material for electrochromic (EC) windows that operates at the flick of a switch is designed to block infrared radiation - which is the major component of sunlight that emits heat.

The new material has a specifically designed nanostructure and comprises advanced materials like titanium dioxide (TiO2), tungsten trioxide (WO3), neodymium-Niobium (Nd-Nb), and tin (IV) oxide (SnO2). The composite material is intended to be coated onto glass window panels, and when activated by electricity, users would be able to 'switch on and off' the infrared radiation transmission through the window.

The invention, which featured alongside the front cover of the journal ACS Omega, could block up to 70 per cent of infrared radiation according to experimental simulations without compromising views through the window since it allows up to 90 per cent of visible light to pass through.

The material is also about 30 per cent more effective in regulating heat than commercially available electrochromic windows and is cheaper to make due to its durability.

An improvement over current electrochromic (EC) window
Electrochromic windows are a common feature in 'green' buildings today. They work by becoming tinted when in use, reducing light from entering the room.

Commercially available electrochromic windows usually have a layer of tungsten trioxide (WO3) coated on one side of the glass panel, and the other, without. When the window is switched on, an electric current moves lithium ions to the side containing WO3, and the window darkens or turns opaque. Once switched off, the ions migrate away from the coated glass, and the window becomes clear again.

However, current electrochromic windows are only effective in blocking visible light, not the infrared radiation, which means heat continues to pass through the window, warming up the room.

Another drawback of the current technology is its durability, as the performance of the electrochromic component tends to degrade in three to five years. In lab tests, NTU's electrochromic technology was put through rigorous on-off cycles to evaluate its durability Results showed the properties of the window retained excellent stability (blocked more than 65% of infrared radiation) demonstrating its superior performance, feasibility and costs saving potential for long-term use in sustainable buildings.

Lead author of the electrochromic window study, Associate Professor Alfred Tok of the NTU School of Materials Science and Engineering said, "By incorporating the specially designed nanostructure, we enabled the material to react in a 'selective' manner, blocking near infrared radiation while still allowing most of the visible light to pass through whenever our electrochromic window is switched on. The choice of advanced materials also helped improved the performance, stability and durability of the smart window."

The new electrochromic technology may help conserve energy that would be used for the heating and cooling of buildings and could contribute to the future design of sustainable green buildings, say the research team.

The study reflects the university's commitment to address humanity's grand challenges on sustainability as part of the NTU 2025 strategic plan, which seeks to accelerate the translation of research discoveries into innovations that mitigate human impact on the environment.

Next generation smart window: Controlling both infrared radiations and conduction heat
Seeking to improve the performance of their smart window technology, the NTU team, in a separate work to that reported in the journal, created a switch system that helps to control conducted heat, which is the heat from the external environment.

The patented NTU switch comprises magnetic carbon-based particles and thin films that are good conductors of heat. When the switch is turned off, conducted heat cannot transfer through the window. When switched on, the heat will be allowed to pass through the glass window.

When integrated with the newly developed electrochromic material, the team's smart window can control two types of heat transmission: infrared radiation and conduction heat, which is the main mode of heat transfer through matter.

First author of the study, Dr Ronn Goei, Senior Research Fellow at the NTU School of Materials Science and Engineering said, "By integrating both the new electrochromic material we invented and the patented switch in a window, we can create a smart window with unique capabilities. With the ability to control both infrared radiated heat from the sun and conducted heat passing through the window, we expect this technology to be particularly useful in temperate climates, as building occupants can use it to regulate heat loss or gain according to the needs of the changing seasons, while still enjoying much of the view."

Co-author Professor Shlomo Magdassi from the Institute of Chemistry at the Hebrew University of Jerusalem, said, "The research outcome is expected to enable fabrication of unique windows that will result in energy savings. This is an excellent example of scientific collaboration between the researchers at NTU and The Hebrew University of Jerusalem, Israel, enabled by the CREATE programme of Singapore's National Research Foundation."

Exploring commercial potential
Moving forward, the research team hopes to take the invention from lab to market. It has partnered with glass manufacturer iGlass Asia Pacific for further tests, and to look at potentially incorporating the smart window into its projects for improved efficiency and sustainability.

Jeremy Sani, Director at iGlass Asia Pacific, a Singapore-based company specialising in innovative glass manufacturing, and the industry collaborator of the research study said, "It is our privilege and honour to take this innovation journey with NTU. While we have the commercial and application knowledge, NTU in-depth knowhow from a technical perspective has taken the execution of the project to the next level that is beyond our expectations."

Research Report: "Nd-Nb Co-doped SnO2/a-WO3 Electrochromic Materials: Enhanced Stability and Switching Properties"


Related Links
Nanyang Technological University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Intensified solar thermochemical CO2 splitting over iron-based perovskite
Dalian, China (SPX) Nov 11, 2021
Anthropogenic CO2 is the main cause of climate change. There is a pressing need to develop efficient technologies for chemical/fuel production from CO2, ultimately realizing carbon circularity. Among all the various renewable energy solutions, the two-step solar thermochemical CO2-splitting (STCS), exploiting concentrated solar energy of entire solar spectrum to drive redox reactions, shows great promise given its ultra-high theoretical solar-to-fuel efficiency. Isothermal chemical cycles have bee ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Bioenergy crops better for biodiversity than food-based agriculture

Recycling CO2 to fuel a carbon-neutral future

Converting methane to methanol - with and without water

Making aircraft fuel from sunlight and air

SOLAR DAILY
This robot doesn't need to knock

A personalized exosuit for real-world walking

Giving robots social skills

They'll lead the robots out

SOLAR DAILY
Green hydrogen from expanded wind power in China

Scientists bring efficiency to expanding offshore wind energy

From oil to renewables, winds of change blow on Scottish islands

US unveils plans for seven major offshore wind farms

SOLAR DAILY
Top carmaker Toyota defends skipping COP26 emissions pledge

Producers target 2040 end date for polluting vehicles

DoorDash takes aim at Europe with purchase of Wolt

Battle the algorithms: China's delivery riders on the edge

SOLAR DAILY
Radio-frequency wave scattering improves fusion simulations

New scalable method resolves materials joining in solid-state batteries

Large-scale synthesis methods for single-atom catalysts for alkaline fuel cells

Surrey researchers reveal the hidden behaviour of supercapacitor materials

SOLAR DAILY
Options for the Diablo Canyon nuclear plant

Rolls-Royce launches nuclear reactor business

Greenland passes law banning uranium mining

Macron says France to build more nuclear reactors

SOLAR DAILY
World needs trillions to face climate threat: draft UN report

COP26 draft urges boost to emissions cutting goals by 2022

Countries far apart as climate talks enter final week

Chasm opens between COP26 words and climate action

SOLAR DAILY
Climate change and fires: Bolivia's forests in peril

'We can't live in a world without the Amazon': scientist

Amazon deforestation threatens jaguars, giant eagles

New gold rush fuels Amazon destruction









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.