Solar Energy News
SOLAR DAILY
NUS develops perovskite nanocrystal scintillators for precise single-proton detection
Figure (A) shows the schematic of proton-beam-induced luminescence (ionoluminescence) in a transmission thin scintillator comprising CsPbBr3 nanocrystals (cubic structure), and proton-induced ionisation to produce secondary electrons (d-rays).
NUS develops perovskite nanocrystal scintillators for precise single-proton detection
by Simon Mansfield
Sydney, Australia (SPX) Feb 02, 2024

In a significant leap forward for particle radiation detection technology, researchers from the National University of Singapore (NUS) have introduced an innovative transmissive thin scintillator crafted from perovskite nanocrystals. This novel device is engineered for the real-time tracking and counting of single protons, marking a considerable advancement in the field of particle detection.

At the heart of this breakthrough is the scintillator's exceptional sensitivity, attributed to biexcitonic radiative emission generated through proton-induced upconversion and impact ionization. This technological innovation is poised to revolutionize a range of scientific and technological domains, including fundamental physics, quantum technology, deep space exploration, and notably, proton cancer therapy.

The quest for precise dose control in proton therapy has catalyzed extensive research into advanced proton detectors. The NUS team's development stands out by addressing a critical challenge in the field: the need for real-time proton irradiation with single-proton counting accuracy. Unlike traditional particle detectors, which are hampered by their bulkiness or insufficient sensitivity, the NUS-developed scintillator combines ultrathin construction with unparalleled sensitivity.

Led by Professor Liu Xiaogang from the NUS Department of Chemistry and Associate Professor Andrew Bettiol from the NUS Department of Physics, the research team has showcased a thin-film transmissive scintillator that significantly outperforms existing solutions. With a light yield approximately double that of commercially available BC-400 plastic thin-film scintillators and ten times greater than conventional bulk scintillators like LYSO:Ce, BGO, and YAG:Ce crystals, this innovation represents a major step forward in the detection and imaging of single protons.

The scintillators, with a mere thickness of about 5 um, achieve a detection limit of 7 protons per second- a sensitivity that is several orders of magnitude lower than the counting rates deemed clinically relevant. This capability is crucial for applications where precise detection and imaging are paramount.

Moreover, the team has put forward a novel theory regarding the scintillation mechanisms induced by protons in CsPbBr3 nanocrystals, providing significant insights into the fundamental processes underpinning proton scintillation. This understanding is instrumental in harnessing the full potential of perovskite nanocrystals in particle radiation detection.

Utilizing the enhanced sensitivity and fast response time (~336 ps) of these scintillators, the researchers have demonstrated their utility in applications ranging from single-proton tracing and real-time patterned irradiation to super-resolution proton imaging. Impressively, the study achieved a spatial resolution of sub-40 nm for proton imaging, heralding new possibilities for materials characterization, medical imaging, and scientific research.

Professor Liu emphasized the transformative impact of their work, noting, "The breakthrough presented in this work would be of considerable interest to particle radiation detection communities, offering both fundamental insights into new mechanisms of proton scintillation and technical advances in groundbreaking single-ion detection sensitivity using ultrathin proton-transmissive scintillators. In particular, these CsPbBr3 nanocrystal scintillators hold overwhelming promise for advancing detection technology in proton therapy and proton radiography."

Published in the journal Nature Materials, this research not only contributes to the advancement of detection technologies but also underscores the potential of perovskite nanocrystals in revolutionizing the field. As the scientific community continues to explore the applications of this novel technology, the findings from the NUS team offer a promising path towards improved diagnostics, therapy, and understanding of particle physics.

Research Report:Real-time single-proton counting with transmissive perovskite nanocrystal scintillators

Related Links
National University of Singapore
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Innovative chiral molecule strategy boosts perovskite solar cell efficiency
Sydney, Australia (SPX) Jan 29, 2024
In the dynamic world of solar energy, metal halide perovskite solar cells (PSCs) have recently marked a significant milestone, with their power conversion efficiency (PCE) reaching an impressive 26.1%, inching closer to the efficiency levels of traditional crystalline silicon cells. This achievement is particularly notable given the relatively short time span of just over a decade in which PSCs have developed. The latest research indicates that PSCs could potentially exceed a 30% PCE threshold, a ... read more

SOLAR DAILY
Nickel Single-Atom Catalysts mark new era in CO2 to CO Electroreduction

Fungal garden cultivated by Leafcutter Ants provide insights into biofuels

Ants help reveal why sourcing different plants for eco fuels is crucial for biodiversity

Synthetic aviation fuel has yet to take off in Europe: study

SOLAR DAILY
AI reads ancient scroll buried by Vesuvius eruption

New York bins subway surveillance robot

Tech layoffs for AI, but Wall Street ready for stellar earnings

Musk says Neuralink installs brain implant in first patient

SOLAR DAILY
Leaf-shaped generators create electricity from the wind and rain

European offshore wind enjoys record year in 2023

Danish firm to build huge wind farm off UK

UK unveils massive news windfarm investment by UAE, German firms

SOLAR DAILY
Chinese EV giant BYD expects record net profit for 2023

Australia to set fuel efficiency standards after decades of debate

Parisians vote in anti-SUV parking price referendum

China's BYD says Hungary factory to start making cars in 3 years

SOLAR DAILY
Scientists create effective 'spark plug' for direct-drive inertial confinement fusion experiments

Rwanda signs lithium deal with Rio Tinto

Innovative use of femtosecond lasers converts glass into semiconductor

Innovative control of fusion plasma achieved through digital twin technology

SOLAR DAILY
Zeno Power Selects Westinghouse for Key Role in Radioisotope Power System Fabrication

Ukraine to build 4 nuclear reactors as war hits power supply

GE Hitachi receives UK government grant for nuclear energy development

Putin gives go-ahead to new nuclear icebreaker

SOLAR DAILY
World needs 'torrents' of cash for green transition: UN climate chief

UK climate watchdog accuses Sunak of sending 'mixed signals'

Chile's whirlwind energy transition leaves workers stranded

EU rules have failed to cut car C02 emissions: report

SOLAR DAILY
New mayor hopes trees will cool Athens down

China-funded nickel hub stoking deforestation on Indonesia island: report

Pacific kelp forests are far older that we thought

Soil fungi may help explain the global gradient in forest diversity

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.