Solar Energy News  
NANO TECH
Nano-chimneys can cool circuits
by Staff Writers
Houston TX (SPX) Jan 06, 2017


Simulations by Rice University scientists show that placing cones between graphene and carbon nanotubes could enhance heat dissipation from nano-electronics. The nano-chimneys become better at conducting heat-carrying phonons by spreading out the number of heptagons required by the graphene-to-nanotube transition. Image courtesy Alex Kutana/Rice University. For a larger version of this image please go here.

A few nanoscale adjustments may be all that is required to make graphene-nanotube junctions excel at transferring heat, according to Rice University scientists. The Rice lab of theoretical physicist Boris Yakobson found that putting a cone-like "chimney" between the graphene and nanotube all but eliminates a barrier that blocks heat from escaping.

The research appears in the American Chemical Society's Journal of Physical Chemistry C.

Heat is transferred through phonons, quasiparticle waves that also transmit sound. The Rice theory offers a strategy to channel damaging heat away from next-generation nano-electronics.

Both graphene and carbon nanotubes consist of six-atom rings, which create a chicken-wire appearance, and both excel at the rapid transfer of electricity and phonons.

But when a nanotube grows from graphene, atoms facilitate the turn by forming heptagonal (seven-member) rings instead. Scientists have determined that forests of nanotubes grown from graphene are excellent for storing hydrogen for energy applications, but in electronics, the heptagons scatter phonons and hinder the escape of heat through the pillars.

The Rice researchers discovered through computer simulations that removing atoms here and there from the two-dimensional graphene base would force a cone to form between the graphene and the nanotube. The geometric properties (aka topology) of the graphene-to-cone and cone-to-nanotube transitions require the same total number of heptagons, but they are more sparsely spaced and leave a clear path of hexagons available for heat to race up the chimney.

"Our interest in advancing new applications for low-dimensional carbon - fullerenes, nanotubes and graphene - is broad," Yakobson said. "One way is to use them as building blocks to fill three-dimensional spaces with different designs, creating anisotropic, nonuniform scaffolds with properties that none of the current bulk materials have. In this case, we studied a combination of nanotubes and graphene, connected by cones, motivated by seeing such shapes obtained in our colleagues' experimental labs."

The researchers tested phonon conduction through simulations of free-standing nanotubes, pillared graphene and nano-chimneys with a cone radius of either 20 or 40 angstroms. The pillared graphene was 20 percent less conductive than plain nanotubes. The 20-angstrom nano-chimneys were just as conductive as plain nanotubes, while 40-angstrom cones were 20 percent better than the nanotubes.

"The tunability of such structures is virtually limitless, stemming from the vast combinatorial possibilities of arranging the elementary modules," said Alex Kutana, a Rice research scientist and co-author of the study. "The actual challenge is to find the most useful structures given a vast number of possibilities and then make them in the lab reliably.

"In the present case, the fine-tuning parameters could be cone shapes and radii, nanotube spacing, lengths and diameters. Interestingly, the nano-chimneys also act like thermal diodes, with heat flowing faster in one direction than the other," he said.

Rice graduate student Ziang Zhang is lead author of the paper. Ajit Roy, a principal materials research engineer at the Air Force Research Laboratory in Dayton, Ohio, is a co-author. Yakobson is the Karl F. Hasselmann Professor of Materials Science and NanoEngineering and a professor of chemistry.

The Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative supported the research. Calculations were performed on Rice's National Science Foundation-supported DAVinCI supercomputer administered by the Center for Research Computing, procured in partnership with the Ken Kennedy Institute for Information Technology.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanoscale 'conversations' create complex, multi-layered structures
Upton NY (SPX) Jan 03, 2017
Building nanomaterials with features spanning just billionths of a meter requires extraordinary precision. Scaling up that construction while increasing complexity presents a significant hurdle to the widespread use of such nano-engineered materials. Now, scientists at the U.S. Department of Energy's Brookhaven National Laboratory have developed a way to efficiently create scalable, multil ... read more


NANO TECH
Potential biofuel crops in Hawaii may successfully sequester carbon in soil

Biomass operations aren't currently feasible in rural communities

Molecular Velcro boosts microalgae's potential in biofuel, industrial applications

Ultrafast lasers reveal light-harvesting secrets of photosynthetic algae

NANO TECH
China's Huawei adds Amazon Alexa to flagship phone

Fractional calculus helps control systems hit their mark

Fractional disturbance observers could help machines stay on track

Smart tech: This year's CES big on artificial intelligence

NANO TECH
The answer is blowing in the wind

French power group aims to double wind capacity

New rules for micro-grids in Alberta

Offshore wind makes U.S. debut

NANO TECH
Chrysler's new tech-rich concept car aims young

Hyundai eyes autonomous cars for the masses

BMW to deploy 40 self-driving cars in US, Europe

U.S. funding more alternative vehicle efforts

NANO TECH
Rolling out an e-sticker revolution

Bright future for energy devices

World's smallest electrical wire made from world's smallest diamonds

Lifetime of organic light-emitting diodes affected by impurities in vacuum

NANO TECH
AREVA NP supplies Safety Instrumentation and Control System for Generation 3 Reactor

Battling energy crisis, Pakistan turns on fourth nuclear plant

Report finds additional radioactive materials in gas-well drill cuttings

Chemistry research breakthrough that could improve nuclear waste recycling technologies

NANO TECH
China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

NANO TECH
Obama creates two new national monuments

Amazonia's best and worst areas for carbon recovery revealed

Warming could slow upslope migration of trees

Better road planning could boost food production while protect forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.