Solar Energy News  
STELLAR CHEMISTRY
Nano 'hall of mirrors' causes molecules to mix with light
by Staff Writers
Cambridge, UK (SPX) Jun 16, 2016


Mixing light with dye molecules, trapped in golden gaps. Image courtesy Yi Ju/University of Cambridge NanoPhotonics. For a larger version of this image please go here.

When a molecule emits a blink of light, it doesn't expect it to ever come back. However researchers have now managed to place single molecules in such a tiny optical cavity that emitted photons, or particles of light, return to the molecule before they have properly left. The energy oscillates back and forth between light and molecule, resulting in a complete mixing of the two.

Previous attempts to mix molecules with light have been complex to produce and only achievable at very low temperatures, but the researchers, led by the University of Cambridge, have developed a method to produce these 'half-light' molecules at room temperature.

These unusual interactions of molecules with light provide new ways to manipulate the physical and chemical properties of matter, and could be used to process quantum information, aid in the understanding of complex processes at work in photosynthesis, or even manipulate the chemical bonds between atoms. The results are reported in the journal Nature.

To use single molecules in this way, the researchers had to reliably construct cavities only a billionth of a metre (one nanometre) across in order to trap light. They used the tiny gap between a gold nanoparticle and a mirror, and placed a coloured dye molecule inside.

"It's like a hall of mirrors for a molecule, only spaced a hundred thousand times thinner than a human hair," said Professor Jeremy Baumberg of the NanoPhotonics Centre at Cambridge's Cavendish Laboratory, who led the research.

In order to achieve the molecule-light mixing, the dye molecules needed to be correctly positioned in the tiny gap. "Our molecules like to lie down flat on the gold, and it was really hard to persuade them to stand up straight," said Rohit Chikkaraddy, lead author of the study.

To solve this, the team joined with a team of chemists at Cambridge led by Professor Oren Scherman to encapsulate the dyes in hollow barrel-shaped molecular cages called cucurbiturils, which are able to hold the dye molecules in the desired upright position.

When assembled together correctly, the molecule scattering spectrum splits into two separated quantum states which is the signature of this 'mixing'. This spacing in colour corresponds to photons taking less than a trillionth of a second to come back to the molecule.

A key advance was to show strong mixing of light and matter was possible for single molecules even with large absorption of light in the metal and at room temperature. "Finding single-molecule signatures took months of data collection," said Chikkaraddy.

The researchers were also able to observe steps in the colour spacing of the states corresponding to whether one, two, or three molecules were in the gap.

Research paper: "Single-molecule strong coupling at room temperature in plasmonic nanocavities"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Light: Information's new friend
Johannesburg, South Africa (SPX) Jun 14, 2016
The rise of big data and advances in information technology has serious implications for our ability to deliver sufficient bandwidth to meet the growing demand. Researchers at the University of the Witwatersrand in Johannesburg, South Africa, and the Council for Scientific and Industrial Research (CSIR) are looking at alternative sources that will be able to take over where traditional opt ... read more


STELLAR CHEMISTRY
Bioenergy integrated in the bio-based economy crucial to meet climate targets

Chemicals from wood waste

New 3-D printed polymer can convert methane to methanol

Nissan bets on ethanol for fuel-cell vehicles

STELLAR CHEMISTRY
How insights into human learning can foster smarter artificial intelligence

China's Midea begins takeover bid for German robotics firm

Robots to provide a steadying hand at the right time

Flight of the RoboBee

STELLAR CHEMISTRY
Renewables getting cheaper, report finds

Gamesa, Siemens join forces to create global wind power leader

Germany slows pace of green energy transition

Ireland aims for greener future

STELLAR CHEMISTRY
Olli, a 3D printed, self-driving minibus, to hit the road in US

US authorities extend deadline for VW in 'dieselgate' scandal

China's Uber rival Didi Chuxing raises $7.3 bn in new capital

What's driving the next generation of green products?

STELLAR CHEMISTRY
Loofah-based material could give lithium batteries a boost

A new way to control oxygen for electronic properties

Efficient hydrogen production made easy

Storage technologies for renewable energy can pay off

STELLAR CHEMISTRY
New material has potential to cut costs and make nuclear fuel recycling cleaner

Southern Research launches 'Gen IV' nuclear power effort with key hire

Proposed bilateral deal allows US to share nuclear reactors with Norway

Dutch probe cross-border nuclear safety

STELLAR CHEMISTRY
Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

Changing the world, 1 fridge at a time

STELLAR CHEMISTRY
California's urban trees offer $1 billion in benefits

Yellow Meranti tree in Malaysia is likely the tallest in the tropics

Guatemalan drug lords burning forests to land planes

Beetles, the axe: double trouble for prized Polish forest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.