Solar Energy News  
NANO TECH
Nano particles for healthy tissue
by Staff Writers
Paris (ESA) Sep 07, 2020

Stock image of the Kubik space incubator.

"Eat your vitamins" might be replaced with "ingest your ceramic nano-particles" in the future as space research is giving more weight to the idea that nanoscopic particles could help protect cells from common causes of damage.

Oxidative stress occurs in our bodies when cells lose the natural balance of electrons in the molecules that we are made of. This is a common and constant occurrence that is part of our metabolism but also plays a role in the aging process and several pathological conditions, such as heart failure, muscle atrophy and Parkinson's disease.

The best advice for keeping your body in balance and avoiding oxidative stress is still to have a healthy diet and eat enough vitamins, but nanoparticles are showing promising results in keeping cells in shape.

When in space, astronauts have been shown to suffer from more oxidative stress due to the extra radiation they receive and as a by-product of floating in weightlessness, so researchers in Italy were keen to see if nanoparticles would have the same protective effect on cells on the International Space Station as on Earth.

They prepared muscle cells that flew to the International Space Station and were cultured in ESA's Kubik incubator before being frozen for storage.

"A year ago our frozen samples splashed down in the Pacific Ocean on the Dragon spacecraft, and after comparing the samples we saw a marked effect in the cells treated with ceramic nanoparticles," says Gianni Ciofani from the Istituto Italiano di Tecnologia in Italy. "The effect we observed seems to imply that nanoparticles work better and longer than traditional antioxidants such as vitamins."

"The experiment setup resulted in excellent samples to analyse using state-of-the art RNA sequencing," continues Gianni. "Conducting space research is nothing like traditional lab work, as we have less samples, we cannot do the work ourselves and we have to work around deadlines such as launch days, landing and storing the samples, it is challenging but thrilling research!" The team even found ways to improve and simplify the process for future studies.

Baby astronauts hypothesis
The research adds weight to the baby-astronaut hypothesis of weightlessness. The changes in muscle tissue observed are similar to how babies' tissues develop in the womb.

"Some researchers see similarities to how human bodies adapt to living in space with pre-natal conditions: there are similarities with floating in a warm environment with different oxygen intake and we consider it a possibility of return to the state," says Giada Genchi, also of the Istituto Italiano di Tecnologia's Smart Bio-Interfaces department.

The team's high-quality muscle tissue samples are being further analysed and compared to samples from similar experiments that flew earlier. There is still much more to learn, such as what is the best way to administer nano-ceramics and how long do their protective effects last as well as possible unwanted side effects.


Related Links
Human and Robotic Exploration at ESA
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Hybrid nanomaterials hold promise for improved ceramic composites
Wright-Patterson AFB OH (AFNS) Sep 04, 2020
Researchers at Wright-Patterson Air Force Base are seeking to patent a novel process for manufacturing a type of material called preceramic polymer-grafted nanoparticles, or "hairy nanoparticles" (HNP). An HNP is a hybrid material consisting of a polymer shell bound to a solid nanoparticle core. The polymer - a chain of repeating molecules - forms the "hair" around the nanoparticle, which is roughly the size of a small virus. Although HNPs have been around for many years, what makes this one ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Making more of methane

Can sunlight convert emissions into useful materials?

AFRL awards $1M to first Grand Challenge For Biotechnology

Researchers find that bacteria can produce common component in plastic

NANO TECH
Educated yet amoral: AI capable of writing books sparks awe

AlphaDogfight trials foreshadow future of human-machine symbiosis

Human Rights Watch eyes treaty banning 'killer robots'

Subterranean Challenge pivots to all-virtual competition for cave circuit

NANO TECH
Offshore wind power now so cheap it could pay money back to consumers

Trust me if you can

Ingeteam's advanced simulation models to ease wind power grid integration

Magnora ASA and Kustvind AB accelerate development of 500 MW offshore wind project in southern Sweden

NANO TECH
Uber seeks Hong Kong govt meeting after court defeat

Demand for new cars falls in Germany as virus cases rebound

Uber-Lyft back off plans to suspend California ride services

Uber-Lyft to stop California services absent reprieve

NANO TECH
Tungsten isotope helps study how to armor future fusion reactors

CU scientists create batteries that could make it easier to explore Mars

The factory of the future, batteries not included

Russian chemists proposed a new design of flow batteries

NANO TECH
Framatome partners with ADAGOS to bring artificial intelligence to the nuclear energy industry

Framatome signs contract to provide field instrumentation to Hinkley Point C

US versatile test reactor program chooses Bechtel-led team

After Huawei, spotlight on China's role in UK nuclear power

NANO TECH
Germany's first 'green' bonds attract strong demand

Mining for renewable energy may pose 'biodiversity threat'

Finnish town offers prizes to turn residents green

Finnish town offers prizes to turn residents green

NANO TECH
Brazil funding flip-flop triggers alarm; Protesters end roadblock

Toronto seeks to save oak tree older than Canada

Brazil military plane flew illegal Amazon miners: prosecutors

Fight over Myanmar's marble hills; Amazon protesters resume roadblock









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.