Solar Energy News  
STELLAR CHEMISTRY
Neutron star jets shoot down theory
by Staff Writers
Perth, Australia (SPX) Sep 28, 2018

file illustration only

Astronomers have detected radio jets belonging to a neutron star with a strong magnetic field - something not predicted by current theory, according to a new study published in Nature.

The team, led by researchers at the University of Amsterdam, observed the object known as Swift J0243.6+6124 using the Karl G. Jansky Very Large Array radio telescope in New Mexico and NASA's Swift space telescope.

"Neutron stars are stellar corpses," said study co-author Associate Professor James Miller-Jones, from Curtin University's node of the International Centre for Radio Astronomy Research (ICRAR).

"They're formed when a massive star runs out of fuel and undergoes a supernova, with the central parts of the star collapsing under their own gravity.

"This collapse causes the star's magnetic field to increase in strength to several trillion times that of our own Sun, which then gradually weakens again over hundreds of thousands of years."

University of Amsterdam PhD student Jakob van den Eijnden, who led the research, said neutron stars and black holes are sometimes found in orbit with a nearby "companion" star.

"Gas from the companion star feeds the neutron star or black hole and produces spectacular displays when some of the material is blasted out in powerful jets travelling at close to the speed of light," he said.

Astronomers have known about jets for decades but until now, they had only observed jets coming from neutron stars with much weaker magnetic fields. The prevailing belief was that a sufficiently strong magnetic field prevents material getting close enough to a neutron star to form jets.

"Black holes were considered the undisputed kings of launching powerful jets, even when feeding on just a small amount of material from their companion star," Van den Eijnden said.

"The weak jets belonging to neutron stars only become bright enough to see when the star is consuming gas from its companion at a very high rate.

"The magnetic field of the neutron star we studied is about 10 trillion times stronger than that of our own Sun, so for the first time ever, we have observed a jet coming from a neutron star with a very strong magnetic field.

"The discovery reveals a whole new class of jet-producing sources for us to study," he said.

Astronomers around the world study jets to better understand what causes them and how much power they release into space.

"Jets play a really important role in returning the huge amounts of gravitational energy extracted by neutron stars and black holes back into the surrounding environment," Associate Professor Miller-Jones said.

"Finding jets from a neutron star with a strong magnetic field goes against what we expected, and shows there's still a lot we don't yet know about how jets are produced."


Related Links
International Centre for Radio Astronomy Research
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
A new twist on stellar rotation
Gottingen, Germany (SPX) Sep 21, 2018
What do we know about distant stars aside from their brightness and colors? Is our Sun a typical star? Or does it show certain properties that make it special, or maybe even unique? One property that is not fully understood is rotation. In its outer layers the Sun has a rotation pattern that scientists refer to as 'latitudinal differential rotation.' This means that different latitudes rotate at different rates. While at the Sun's equator one full rotation takes approximately 25 days, the higher l ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Photosynthesis discovery could help next-gen biotechnologies

Ready-to-use recipe for turning plant waste into gasoline

After 150 years, a breakthrough in understanding the conversion of CO2 to electrofuels

New method more than doubles sugar production from plants

STELLAR CHEMISTRY
Amazon aims to make Alexa assistant bigger part of users' lives

Spray coated tactile sensor on a 3D surface for robotic skin

Machine-learning system tackles speech and object recognition, all at once

'Robotic skins' turn everyday objects into robots

STELLAR CHEMISTRY
Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

STELLAR CHEMISTRY
Late to the party, German carmakers join race against Tesla

Drivers for Uber, Lyft see incomes fall as participation jumps

Renault-Nissan alliance takes Google Android for a drive

Ford CEO warns tariffs cut $1 bn in profit: report

STELLAR CHEMISTRY
What powers deep space travel

New battery gobbles up carbon dioxide

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

A novel approach of improving battery performance

STELLAR CHEMISTRY
Framatome wins I and C modernization contract for EDF's 900 MW reactors

Framatome to deliver ATRIUM 11 fuel to Talen Energy's Susquehanna Station

US Nuclear Lab Building Micro-Reactor That Can Power an Army Brigade

Engie denies plans to sell Belgian nuclear plants

STELLAR CHEMISTRY
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

STELLAR CHEMISTRY
Wetlands disappearing three times faster than forests: study

Once majestic Atlantic Forest 'empty' after 500 years of over-exploitation

Coastal wetlands will survive rising seas, but only if we let them

Coal plant offsets with carbon capture means covering 89 percent of the US in forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.