Solar Energy News  
TIME AND SPACE
Neutrons detect elusive Higgs amplitude mode in quantum material
by Staff Writers
Oak Ridge TN (SPX) Jul 10, 2017


The ORNL-led research team selected a crystal composed of copper bromide -- because the copper ion is ideal for studying exotic quantum effects -- to observe the elusive Higgs amplitude mode in two dimensions. The sample was examined using cold neutron triple-axis spectrometer beams for neutron scattering at the High Flux Isotope Reactor. Credit Genevieve Martin, Oak Ridge National Laboratory/Dept. of Energy

A team led by the Department of Energy's Oak Ridge National Laboratory has used sophisticated neutron scattering techniques to detect an elusive quantum state known as the Higgs amplitude mode in a two-dimensional material.

The Higgs amplitude mode is a condensed matter cousin of the Higgs boson, the storied quantum particle theorized in the 1960s and proven experimentally in 2012. It is one of a number of quirky, collective modes of matter found in materials at the quantum level. By studying these modes, condensed matter researchers have recently uncovered new quantum states known as quasiparticles, including the Higgs mode.

These studies provide unique opportunities to explore quantum physics and apply its exotic effects in advanced technologies such as spin-based electronics, or spintronics, and quantum computing.

"To excite a material's quantum quasiparticles in a way that allows us to observe the Higgs amplitude mode is quite challenging," said Tao Hong, an instrument scientist with ORNL's Quantum Condensed Matter Division.

Although the Higgs amplitude mode has been observed in various systems, "the Higgs mode would often become unstable and decay, shortening the opportunity to characterize it before losing sight of it," Hong said.

The ORNL-led team offered an alternative method. The researchers selected a crystal composed of copper bromide, because the copper ion is ideal for studying exotic quantum effects, Hong explained. They began the delicate task of "freezing" the material's agitating quantum-level particles by lowering its temperature to 1.4 Kelvin, which is about minus 457.15 degrees Fahrenheit.

The researchers fine-tuned the experiment until the particles reached the phase located near the desired quantum critical point--the sweet spot where collective quantum effects spread across wide distances in the material, which creates the best conditions to observe a Higgs amplitude mode without decay.

With neutron scattering performed at ORNL's High Flux Isotope Reactor, the research team observed the Higgs mode with an infinite lifetime: no decay.

"There's an ongoing debate in physics about the stability of these very delicate Higgs modes," said Alan Tennant, chief scientist of ORNL's Neutron Sciences Directorate. "This experiment is really hard to do, especially in a two-dimensional system. And, yet, here's a clear observation, and it's stabilized."

The research team's observation provides new insights into the fundamental theories underlying exotic materials including superconductors, charge-density wave systems, ultracold bosonic systems and antiferromagnets.

"These breakthroughs are having widespread impact on our understanding of materials' behavior at the atomic scale," Hong added.

The study, titled, "Direct observation of the Higgs amplitude mode in a two-dimensional quantum antiferromagnet near the quantum critical point," was published in Nature Physics. It was co-authored by ORNL's Tao Hong, Sachith E. Dissanayake, Harish Agrawal and David A. (Alan) Tennant, and scientists from Shizuoka University, the National Institute of Standards and Technology, University of Maryland, University of Jordan, Clark University, Helmholtz-Zentrum Berlin for Materials and Energy and Lehrstuhl fur Theoretische Physik I.

TIME AND SPACE
Table top plasma gets wind of solar turbulence
Mumbai, India (SPX) Jul 03, 2017
Turbulent magnetic field dynamics that explain astrophysical phenomena like the evolution of stars could thus far be obtained only through observations via telescopes and satellites. Now a team of scientists from India and Portugal have recreated such magnetic turbulence on a table top in the lab, using a high intensity ultrashort laser pulse to excite a hot, dense plasma on a solid surfac ... read more

Related Links
Oak Ridge National Laboratory
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Solving a sweet problem for renewable biofuels and chemicals

Cheap, energy-efficient and clean reaction to make chemical feedstock

Biofuel from waste

Regulating the indirect land use carbon emissions imposes high hidden costs on fuel

TIME AND SPACE
AI Will Prepare Robots for the Unknown

Snake robot could help maintain space station, explore moon

Developing New Approaches to Celestial Threats Using AI

Numenta demonstrates machine intelligence algorithm for real-time anomaly detection

TIME AND SPACE
Thrive Renewables delivers mezzanine funded wind farms in Scotland

It's a breeze: How to harness the power of the wind

ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

TIME AND SPACE
Baidu CEO's self-driving car stunt stumps police: media

China starts regulating bike-sharing as complaints soar

China police probe funding of 'traffic-straddling' bus

Electric vehicles inefficient way to reduce CO2 emissions: study

TIME AND SPACE
CAS researchers develop selective electrocatalysts to boost direct methanol fuel cell performance

New material may help cut battery costs for electric cars, cellphones

Temperature sensor could power more energy-efficient wearable devices

Ruthenium rules for new fuel cells

TIME AND SPACE
Sixth MOX nuclear shipment leaves France for Japan

UK nuclear plant to cost consumers billions more

Toshiba delays results again citing US nuclear unit

AREVA obtains transport license for its new cask in France and Belgium

TIME AND SPACE
Fighting global warming and climate change requires a broad energy portfolio

Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

New ultrathin material for splitting water could make hydrogen production cheaper

TIME AND SPACE
UNESCO urges Poland to stop logging ancient forest

Green activists, rangers face off over Poland's ancient forest

Slow-growing ponderosas survive mountain pine beetle outbreaks

US imposes second round of tariffs on Canadian lumber









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.