Solar Energy News  
New Catalyst Paves The Path For Ethanol-Powered Fuel Cells

Model of a ternary electrocatalyst for ethanol oxidation consisting of platinum-rhodium clusters on a surface of tin dioxide. This catalyst can split the carbon-carbon bond and oxidize ethanol to carbon dioxide within fuel cells.
by Staff Writers
Upton NY (SPX) Jan 29, 2009
A team of scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, in collaboration with researchers from the University of Delaware and Yeshiva University, has developed a new catalyst that could make ethanol-powered fuel cells feasible.

The highly efficient catalyst performs two crucial, and previously unreachable steps needed to oxidize ethanol and produce clean energy in fuel cell reactions. Their results are published online in the January 25, 2009 edition of Nature Materials.

Like batteries that never die, hydrogen fuel cells convert hydrogen and oxygen into water and, as part of the process, produce electricity.

However, efficient production, storage, and transport of hydrogen for fuel cell use is not easily achieved. As an alternative, researchers are studying the incorporation of hydrogen-rich compounds, for example, the use of liquid ethanol in a system called a direct ethanol fuel cell.

"Ethanol is one of the most ideal reactants for fuel cells," said Brookhaven chemist Radoslav Adzic. "It's easy to produce, renewable, nontoxic, relatively easy to transport, and it has a high energy density. In addition, with some alterations, we could reuse the infrastructure that's currently in place to store and distribute gasoline."

A major hurdle to the commercial use of direct ethanol fuel cells is the molecule's slow, inefficient oxidation, which breaks the compound into hydrogen ions and electrons that are needed to generate electricity. Specifically, scientists have been unable to find a catalyst capable of breaking the bonds between ethanol's carbon atoms.

But at Brookhaven, scientists have found a winner. Made of platinum and rhodium atoms on carbon-supported tin dioxide nanoparticles, the research team's electrocatalyst is capable of breaking carbon bonds at room temperature and efficiently oxidizing ethanol into carbon dioxide as the main reaction product. Other catalysts, by comparison, produce acetalhyde and acetic acid as the main products, which make them unsuitable for power generation.

"The ability to split the carbon-carbon bond and generate CO2 at room temperature is a completely new feature of catalysis," Adzic said. "There are no other catalysts that can achieve this at practical potentials."

Structural and electronic properties of the electrocatalyst were determined using powerful x-ray absorption techniques at Brookhaven's National Synchrotron Light Source, combined with data from transmission electron microscopy analyses at Brookhaven's Center for Functional Nanomaterials.

Based on these studies and calculations, the researchers predict that the high activity of their ternary catalyst results from the synergy between all three constituents - platinum, rhodium, and tin dioxide - knowledge that could be applied to other alternative energy applications.

"These findings can open new possibilities of research not only for electrocatlysts and fuel cells but also for many other catalytic processes," Adzic said.

Next, the researchers will test the new catalyst in a real fuel cell in order to observe its unique characteristics first hand.

This work is supported by the Office of Basic Energy Sciences within DOE's Office of Science.

Related Links
Brookhaven National Laboratory
Bio Fuel Technology and Application News



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Verenium Announces First Commercial Cellulosic Ethanol Project
Tallahassee Fl (SPX) Jan 29, 2009
Verenium has announced plans to build its first commercial-scale cellulosic ethanol facility in Highlands County, Florida. The Company has entered into long-term agreements with Lykes Bros. Inc., a multi-generation Florida agri-business to provide the agricultural biomass for conversion to fuel.







  • Union Leader Urges The Government To Push Ahead With Nuclear Energy
  • Nuclear Fusion-Fission Hybrid Could Contribute To Carbon-Free Energy Future
  • Siemens gives up stake in Areva
  • Siemens planning to give up stake in Areva: source

  • Global warming 'irreversible' for next 1000 years: study
  • Argentina issues agricultural emergency due to drought
  • Obama begins teardown of Bush climate policy
  • EU welcomes Obama climate vow

  • U.S. honey producers question imports
  • World must double food production by 2050: FAO chief
  • Sierra Leone mans defences against army worm invasion
  • Nile Delta Fishery Grows Dramatically

  • Even in war zone, wild gorillas go forth and multiply
  • Scientists Identify Bacteria That Increase Plant Growth
  • Move Over, Sponges
  • Great Speciators Explained: It's Intrinsic

  • U.S. rocketry competition is under way
  • ATK And NASA Complete Major Milestones For NASA Constellation Program
  • KSC Operations And Checkout Facility Ready To Start Orion Spacecraft Integration
  • Race To Orbit Gets Underway At Cape With Ares-1-X Test Launch

  • Nuclear Power In Space - Part 2
  • Outside View: Nuclear future in space
  • Nuclear Power In Space

  • New Steps In ESA Cooperation For GMES Program
  • The Orbiting Carbon Observatory And The Mystery Of The Missing Sinks
  • With Cheney gone, Google gains sky view of VP's home
  • GeoEye-1 Earth Imaging Satellite Captures Inaugural Celebration From Space

  • Eutelsat Statement On The W2M Satellite
  • IBM to cut more than 2,800 jobs: union
  • Japan's Fujitsu scraps HDD head business
  • Academy Researcher Develops Satellite Imaging Technology

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement