Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
New Technique Allows Closer Study of How Radiation Damages Materials
by Staff Writers
Raleigh NC (SPX) Aug 08, 2013


Researchers used an HRTEM to simultaneously irradiate the magnesium and collect images of the material at the atomic scale. Image: Weizong Xu.

A team of researchers led by North Carolina State University has developed a technique that provides real-time images of how magnesium changes at the atomic scale when exposed to radiation. The technique may give researchers new insights into how radiation weakens the integrity of radiation-tolerant materials, such as those used in space exploration and in nuclear energy technologies.

"We used high-resolution transmission electron microscopy (HRTEM) to simultaneously irradiate the magnesium and collect images of the material at the atomic scale," says Weizong Xu, a Ph.D. student at NC State and lead author of a paper describing the work. "It is a new way to use an existing technology, and it allowed us to see voids forming and expanding in the material.

"Prior to this, we knew radiation could cause voids that weaken the material, but we didn't know how the voids formed," Xu says. Voids are physical gaps in materials that begin at the atomic level and can cause a material to swell or crack. Click here to see HRTEM footage of a void expanding.

The researchers looked at magnesium for two reasons. First, magnesium's atoms arrange themselves into tightly packed layers in a hexagonal structure.

"This is important, because many radiation-tolerant materials have the same structure - including zirconium, which is widely used in research on radiation-tolerant materials such as those used in nuclear power plants," says Dr. Suveen Mathaudhu, a co-author of the paper and adjunct assistant professor of materials science and engineering at NC State under the U.S. Army Research Office's Staff Research Program.

The second reason they chose magnesium is because it takes less energy to cause void formation in magnesium than in other materials with similar structures, such as zirconium. This lower energy threshold is what allowed researchers to use HRTEM to trigger void formation and capture atomic-scale images of the process with the same microscopy beam.

"You couldn't use this technique on zirconium, for example," Mathaudhu says. "But what we're learning about void formation gives us insight into how radiation damages these kinds of materials.

"In addition to any energy applications, we need to develop new radiation-tolerant materials if we want to explore deep space," Mathaudhu says. "This may move us one step closer to that goal."

"If we can improve our understanding of the mechanisms behind void formation, we can begin developing materials to control the problem," says Dr. Yuntian Zhu, a professor of materials science and engineering at NC State and senior author of the paper.

The paper, "In-situ atomic-scale observation of irradiation-induced void formation," was published online Aug. 5 in Nature Communications. The paper was co-authored by Dr. Guangming Cheng, a former postdoctoral researcher at NC State; Dr. Weiwei Jian, a postdoctoral researcher at NC State; Dr. Carl Koch, Kobe Steel Distinguished Professor in the Department of Materials Science and Engineering at NC State; Dr. Yongfeng Zhang of Idaho National Laboratory; and Dr. Paul C. Millett of the University of Arkansas. The work was supported by the U.S. Army Research Office and Idaho National Laboratory.

.


Related Links
North Carolina State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Wonders of nature inspire exotic man-made materials
London, UK (SPX) Aug 08, 2013
In this month's edition of Physics World, a group of physicists describe how unique structures in the natural world are inspiring scientists to develop new types of materials with unprecedented properties. From adhesive tape inspired by the toes of geckoes to a potential flaw-resistant coating of aeroplanes inspired by mother of pearl, the attractiveness centres on one concept - hierarchic ... read more


TECH SPACE
Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

CSU researchers explore creating biofuels through photosynthesis

Drought response identified in potential biofuel plant

TECH SPACE
Talking robot sent to ISS to 'get along' with humans

SkySweeper Robot Makes Inspecting Power Lines Simple and Inexpensive

'Printable' micro-machines could bring improved bionic limbs

Japan Delivers Hardware ISS Robotic Refueling Test

TECH SPACE
GDF Suez sells half-share of Portuguese renewable, thermal holdings

SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

TECH SPACE
S. Korea tests 'electric road' for public buses

BMW China venture to recall more than 140,000 cars: officials

Car-hacking researchers hope to wake up auto industry

BMW takes 'great leap forward' into electric car market

TECH SPACE
Taking a cue from cactus, new spiky material removes oil from water

Showing Promise for Lighting Energy Reductions

China agency sued over oil production in spill-hit bay

Colorado State Puts The Measure Across Construction Emissions

TECH SPACE
Areva says Niger uranium mine operational after attack

Japan says battle to stop nuclear plant leaks 'urgent'

Japan's TEPCO discloses extent of nuclear plant leak

Taiwan lawmakers scuffle over planned nuclear plant

TECH SPACE
Renewables Account For A Quarter Of New Energy Installed In USA

Spanish ministers meet with energy investors on market reforms

Americans continue to use more renewable energy sources

Sweden's Vattenfall hit by $4.6-bn charge as energy demand plunges

TECH SPACE
One tree's architecture reveals secrets of a forest

Could planting trees in the desert mitigate climate change

Wasps being used to fight tree disease

Drought making trees more susceptible to dying in forest fires




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement