Solar Energy News  
STELLAR CHEMISTRY
New Webb image reveals dusty disk like never seen before
by Agency Writers
Baltimore MD (SPX) Jan 12, 2023

These two images are of the dusty debris disk around AU Mic, a red dwarf star located 32 light-years away in the southern constellation Microscopium. Scientists used Webb's Near-Infrared Camera (NIRCam) to study AU Mic. NIRCam's coronagraph, which blocked the intense light of the central star, allowed the team to study the region very close to the star. The location of the star, which is masked out, is marked by a white, graphical representation at the center of each image. The region blocked by the coronagraph is shown by a dashed circle. Credits: NASA, ESA, CSA, and K. Lawson (Goddard Space Flight Center). Image processing: A. Pagan (STScI)

NASA's James Webb Space Telescope has imaged the inner workings of a dusty disk surrounding a nearby red dwarf star. These observations represent the first time the previously known disk has been imaged at these infrared wavelengths of light. They also provide clues to the composition of the disk.

The star system in question, AU Microscopii or AU Mic, is located 32 light-years away in the southern constellation Microscopium. It's approximately 23 million years old, meaning that planet formation has ended since that process typically takes less than 10 million years. The star has two known planets, discovered by other telescopes. The dusty debris disk that remains is the result of collisions between leftover planetesimals - a more massive equivalent of the dust in our solar system that creates a phenomenon known as zodiacal light.

"A debris disk is continuously replenished by collisions of planetesimals. By studying it, we get a unique window into the recent dynamical history of this system," said Kellen Lawson of NASA's Goddard Space Flight Center, lead author on the study and a member of the research team that studied AU Mic.

"This system is one of the very few examples of a young star, with known exoplanets, and a debris disk that is near enough and bright enough to study holistically using Webb's uniquely powerful instruments," said Josh Schlieder of NASA's Goddard Space Flight Center, principal investigator for the observing program and a study co-author.

The team used Webb's Near-Infrared Camera (NIRCam) to study AU Mic. With the help of NIRCam's coronagraph, which blocks the intense light of the central star, they were able to study the region very close to the star. The NIRCam images allowed the researchers to trace the disk as close to the star as 5 astronomical units (460 million miles) - the equivalent of Jupiter's orbit in our solar system.

"Our first look at the data far exceeded expectations. It was more detailed than we expected. It was brighter than we expected. We detected the disk closer in than we expected. We're hoping that as we dig deeper, there's going to be some more surprises that we hadn't predicted," stated Schlieder.

The observing program obtained images at wavelengths of 3.56 and 4.44 microns. The team found that the disk was brighter at the shorter wavelength, or "bluer," likely meaning that it contains a lot of fine dust that is more efficient at scattering shorter wavelengths of light. This finding is consistent with the results of prior studies, which found that the radiation pressure from AU Mic - unlike that of more massive stars - would not be strong enough to eject fine dust from the disk.

While detecting the disk is significant, the team's ultimate goal is to search for giant planets in wide orbits, similar to Jupiter, Saturn, or the ice giants of our solar system. Such worlds are very difficult to detect around distant stars using either the transit or radial velocity methods.

"This is the first time that we really have sensitivity to directly observe planets with wide orbits that are significantly lower in mass than Jupiter and Saturn. This really is new, uncharted territory in terms of direct imaging around low-mass stars," explained Lawson.

These results are being presented in a press conference at the 241st meeting of the American Astronomical Society. The observations were obtained as part of Webb's Guaranteed Time program 1184.


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Webb reveals links between galaxies near and far
Greenbelt MD (SPX) Jan 10, 2023
A new analysis of distant galaxies imaged by NASA's James Webb Space Telescope shows that they are extremely young and share some remarkable similarities to "green peas," a rare class of small galaxies in our cosmic backyard. "With detailed chemical fingerprints of these early galaxies, we see that they include what might be the most primitive galaxy identified so far. At the same time, we can connect these galaxies from the dawn of the universe to similar ones nearby, which we can study in much g ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Half a million lives could be saved yearly by replacing wood and charcoal stoves in Africa

Can Iceland feed Europe?

Solar-powered system converts plastic and greenhouse gases into sustainable fuels

Aston University to help power Indonesia with affordable energy made from rice straw

STELLAR CHEMISTRY
OpenAI, creator of ChatGPT, casts spell on Microsoft

ChatGPT bot 'for professional use' on the way

A precision arm for miniature robots

Unpacking the "black box" to build better AI models

STELLAR CHEMISTRY
UH professor developing new technologies to improve safety, resiliency of offshore energy systems

New research shows porpoises not harmed by offshore windfarms

A healthy wind

Intelligent drones to make wind turbines far more efficient

STELLAR CHEMISTRY
Computers that power self-driving cars could be a huge driver of global carbon emissions

Uber not planning layoffs: CEO

Bosch plans $1-bn Chinese electromobility site

Insurers need to gear up for electric cars: Swiss Re

STELLAR CHEMISTRY
DOE announces new funding for public-private partnerships to advance fusion energy

Novel design helps develop powerful microbatteries

Electric car batteries could be key to boosting energy storage: study

Turning abandoned mines into batteries

STELLAR CHEMISTRY
Acquittal of Fukushima operator ex-bosses upheld

Slovenia extends nuclear plant operation until 2043

UN nuclear agency says stepping up presence in Ukraine

Saudi Arabia says seeks to use own uranium for nuclear project

STELLAR CHEMISTRY
COP28 a chance for 'hard questions' on fossil fuels: UN climate chief

Thunberg says Davos elite 'fuelling destruction of planet'

EU takes on US, China over clean tech in Davos

Two dead in China chemical plant explosion

STELLAR CHEMISTRY
Deforestation imperils famed DR Congo reserve as refugees flood in

Special drone collects environmental DNA from trees

Most rainforest carbon offsets 'worthless': media analysis

Lula calls for regional policy to preserve Amazon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.