Solar Energy News  
TECH SPACE
New class of materials could revolutionize biomedical, alternative energy industries
by Staff Writers
Columbia MO (SPX) Jan 27, 2017


Polyarylboranes are a new class of materials that could be used in biomedical, personal computer and alternative energy applications. Image courtesy Mark Lee.

Polyhedral boranes, or clusters of boron atoms bound to hydrogen atoms, are transforming the biomedical industry. These manmade materials have become the basis for the creation of cancer therapies, enhanced drug delivery and new contrast agents needed for radioimaging and diagnosis.

Now, a researcher at the University of Missouri has discovered an entirely new class of materials based on boranes that might have widespread potential applications, including improved diagnostic tools for cancer and other diseases as well as low-cost solar energy cells.

Mark Lee Jr., an assistant professor of chemistry in the MU College of Arts and Science, discovered the new class of hybrid nanomolecules by combining boranes with carbon and hydrogen. Boranes are chemically stable and have been tested at extreme heat of up to 900 degrees Celsius or 1,652 degrees Fahrenheit. It is the thermodynamic stability these molecules exhibit that make them non-toxic and attractive to the biomedical, personal computer and alternative energy industries.

"Despite their stability, we discovered that boranes react with aromatic hydrocarbons at mildly elevated temperatures, replacing many of the hydrogen atoms with rings of carbon," Lee said. "Polyhedral boranes are incredibly inert, and it is their reaction with aromatic hydrocarbons like benzene that will make them more useful."

Lee also showed that the attached hydrocarbons communicate with the borane core.

"The result is that these new materials are highly fluorescent in solution," Lee said. "Fluorescence can be used in applications such as bio-imaging agents and organic light-emitting diodes like those in phones or television screens. Solar cells and other alternative energy sources also use fluorescence, so there are many practical uses for these new materials."

Lee's discovery is based on decades of research. Lee's doctoral advisor, M. Frederick Hawthorne, MU Curators Distinguished Professor of Chemistry and Radiology, discovered several of these boron clusters as early as 1959. In the past, boranes have been used for medical imaging, drug delivery, neutron-based treatments for cancer and rheumatoid arthritis, catalysis and molecular motors. Borane researchers also have created a specific type of nanoparticle that selectively targets cancer cells.

"When these molecules were discovered years ago we never could have imagined that they would lead to so many advancements in biomedicine," Lee said.

"Now, my group is expanding on the scope of this new chemistry to examine the possibilities. These new materials, called 'polyarylboranes,' are much broader than we imagined, and now my students are systematically exploring the use of these new clusters."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Missouri-Columbia
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Melting solid below the freezing point
Washington DC (SPX) Jan 24, 2017
Phase transitions surround us - for instance, liquid water changes to ice when frozen and to steam when boiled. Now, researchers at the Carnegie Institution for Science* have discovered a new phenomenon of so-called metastability in a liquid phase. A metastable liquid is not quite stable. This state is common in supercooled liquids, which are liquids that cool below the freezing point with ... read more


TECH SPACE
DuPont Industrial Biosciences to develop new high-efficiency biogas enzyme method

Cathay Pacific to cut emissions with switch to biofuel

Populus dataset holds promise for biofuels, materials, metabolites

Handheld Sensor Unit Determines Biofuel Content Of Diesel Blends

TECH SPACE
New wave of robots set to deliver the goods

Over to you, automation

Making AI systems that see the world as humans do

The French ponder 'joie de vivre' in a work-free future

TECH SPACE
Prysmian UK to supply land cable connections for East Anglia ONE offshore wind farm

Largest US offshore wind farm gets green light

Russia's nuclear giant pushes into wind energy

The power of wind energy and how to use it

TECH SPACE
German prosecutors say probing former VW CEO for fraud

Daimler to supply self-driving cars for Uber

Paris experiments with driverless buses

Society set for head-on collision with driverless cars

TECH SPACE
Former OPEC member Indonesia makes geothermal move

GM, Honda annouce fuel cell venture in Michigan

UNIST researchers get green light to commercialize metal-air batteries

Electrocatalysis can advance green transition

TECH SPACE
France takes key step towards closing ageing nuclear plant

International partnerships vital for UK nuclear energy

New technique could lead to safer, more efficient uranium extraction

Georges Besse II plant reaches full enrichment capacity

TECH SPACE
Iraq inks billion-dollar power plant deal with GE

Nordic countries are bringing about an energy transition worth copying

China energy firm expands in crisis-hit Brazil

Europe to take up climate investment mantle

TECH SPACE
High-tech maps of tropical forest diversity identify new conservation targets

Risk of tree species disappearing in central Africa 'a major concern,' say researchers

Forests 'held their breath' during global warming hiatus, research shows

Trees supplement income for rural farmers in Africa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.