Subscribe free to our newsletters via your
. Solar Energy News .




TECTONICS
New information may help understand earthquakes
by Staff Writers
Amherst MA (SPX) Mar 17, 2015


The UMass Amherst lab is one of only a handful worldwide to use a state-of-the-art modeling technique based on kaolin clay rather than sand to understand the behavior of the Earth's crust. Image courtesy UMass Amherst. For a larger version of this image please go here.

New modeling and analyses of fault geometry in the Earth's crust by geoscientist Michele Cooke and colleagues at the University of Massachusetts Amherst are advancing knowledge about fault development in regions where one geologic plate slides past or over another, such as along California's San Andreas Fault and the Denali Fault in central Alaska.

Findings may help more accurately predict earthquake hazards and allow scientists to better understand how Earth evolved.

Geologists have long been uncertain about the factors that govern how new faults grow, says Cooke, who was recently elected to the board of directors for the Southern California Earthquake Center.

This month in an early online issue of the Journal of Geophysical Research, she and colleagues explain fault evolution near fault bends in greater detail than ever before with experiments using kaolin, or china clay, prepared so its strength scales to that of the Earth's crust when confined in a clay box.

Fault efficiency refers to a dynamic fault system's effectiveness at transforming input energy from the motions of tectonic plates into movement. For example, a straight fault is more efficient at accommodating strain than a curving fault. An important question is how the efficiency of fault bends evolves with increasing deformation of Earth's crust.

Master's student Alex Hatem, who did much of the work in these experiments, with Cooke and postdoctoral scholar Elizabeth Madden, report that fault efficiency increases as new faults grow and link, then reaches a steady state. This implies that bends along crustal faults may persist. The straight fault is the most efficient geometry, Cooke points out. "It's interesting that bends increase in efficiency through new fault growth but they never become as efficient as straight faults."

Because earthquakes may stop at restraining bends, it further suggests a new understanding: faults segmented by restraining bends may remain in a sort of stasis rather than developing into systems where earthquakes would rupture the entire length of the fault. Here Cooke explains that comparing a straight fault with a fault at a bend, it is more likely that the fault with the bend will have smaller earthquakes that stop at the bend rather than long earthquake ruptures that pass all the way along the fault.

Her UMass Amherst lab is one of only a handful worldwide to use a state-of-the-art modeling technique based on kaolin clay rather than sand to understand the behavior of the Earth's crust. Their advanced techniques with the clay include pixel tracking and other quantitative measurements that allow rich details to be obtained from the models and compared with faults around the world.

When scaled properly, data from clay experiments conducted over several hours in a table-top device are useful in modeling restraining bend evolution over thousands of years and at the scale of tens of kilometers. Digital image correlation allows Cooke's team to measure the details of deformation throughout the experiments.

For this work, they conducted kaolin experiments to model strike-slip rates measured in a restraining bend along a Dead Sea fault in Israel, a fault growth along the Denali Fault in Alaska, and through the San Gorgonio Knot along the San Andreas Fault in southern California.

"We apply the results to the southern San Andreas Fault where a restraining bend has persisted for 25 million years, but during that time its active fault configuration has changed in ways that resemble what we observed in our experiments," the authors note.

They add, "Results of the clay box experiments provide critical insights into the evolution of restraining bends. Because the experiments scale to crustal lengths and strengths, we can extrapolate from the experiments to kilometer-scale systems. The models show progressive deformation by the successive outboard growth of dipping faults in some cases and persistence of vertical fault in others."

Understanding the conditions that foster these distinct patterns helps us interpret the geometry and loading of faults within Earth's crust in order to better constrain earthquake behavior.

Cooke says, "Using new digital image correlation techniques allows us very detailed measurements of the displacement in the experiments to provide insights we didn't have before. For the fault bends that we tested, the new analysis reveals that efficiency of the faults increases as new faults grow and link and then reaches a steady state. This suggests that restraining bends along crustal faults may persist," Cooke says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Massachusetts at Amherst
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECTONICS
Novel mechanism proposed to explain Colorado's high elevation
Boulder CO (SPX) Mar 11, 2015
No one really knows how the High Plains got so high. About 70 million years ago, eastern Colorado, southeastern Wyoming, western Kansas and western Nebraska were near sea level. Since then, the region has risen about 2 kilometers, leading to some head scratching at geology conferences. Now researchers at the Cooperative Institute for Research in Environmental Sciences (CIRES) and the Depar ... read more


TECTONICS
CT scanning shows why tilting trees produce better biofuel

Bioelectrochemical processes have the potential to one day replace petrochemistry

Biofuel proteomics

Miscanthus-based ethanol boasts higher profits

TECTONICS
Russian SAR-401 Space Robot Ready for the ISS

Kids and robots learn to write together

25 teams to participate in DARPA Robotics Challenge Finals

Rise of the Machines: video gamers beware

TECTONICS
Time ripe for Atlantic wind, advocates say

Wind energy: TUV Rheinland supervises Senvion sale

Bright spot for wind farms amid RET gloom

Allianz acquire OX2 wind farm in northern Sweden

TECTONICS
Alarming old and young drivers

Lyft secures $530 mn to take on Uber

China's Alibaba drives into 'Internet car' industry

China state TV targets foreign auto firms

TECTONICS
Scientists make breakthrough in understanding nuclear fusion

Japan space scientists make wireless energy breakthrough

High performance, lightweight supercapacitor electrodes of the future

AVX releases new guide for medium and high power film capacitors

TECTONICS
Hungary denies EU nuclear veto report

Hungary, EU say in talks over Budapest-Russia nuclear deal

Taiwan stages mass anti-nuclear rally

South China nuclear plant operates second unit

TECTONICS
Polish Power Exchange hosts 18th AFM Annual Conference

Reducing emissions with a more effective carbon capture method

China to further streamline energy layout amid "new normal"

Where you live could mean 'greener' alternatives do more harm than good

TECTONICS
Beijing's forest coverage rate exceeds 40 percent

Payments for ecosystem services? Here's the guidebook

The green lungs of our planet are changing

Landless Brazilians in GM eucalyptus protest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.