Solar Energy News  
SOLAR DAILY
New insights into energy loss open doors for one up-and-coming solar tech
by Staff Writers
Princeton NJ (SPX) Nov 22, 2022

stock image only

Organic solar cells are an emerging technology with a lot of promise. Unlike the ubiquitous silicon solar panel, they have the potential to be lightweight, flexible, and present a variety of colors, making them particularly attractive for urban or facade applications. However, continued advancements in device performance have been sluggish as researchers work to understand the fundamental processes underlying how organic solar cells operate.

Now, engineers at Princeton University and King Abdullah University of Science and Technology have described a new way to express energy loss in organic solar cells and have extended that description to make recommendations for engineering the best devices. This breakthrough could reimagine the conventional approach to constructing organic solar cells. Their work was published on November 18 in Joule.

"There was a way that energy loss in organic solar cells was traditionally described and defined. And it turns out that that description was not wholly correct," said Barry Rand, co-author of the study and associate professor of electrical and computer engineering and the Andlinger Center for Energy and the Environment.

Rand pointed out that the traditional method for describing energy loss did not account for the presence of disorder in an organic solar cell. One type of disorder, dynamic disorder, is caused by the erratic movement of molecules at the micro level, leading to energy loss that is practically unavoidable at most temperatures. The other type, structural or static disorder, is a product of the intrinsic structures of the various materials used in an organic solar cell, as well as their arrangement inside a device.

Past research on organic solar cells that did not account for disorder in energy loss calculations yielded values around 0.6 electron volts, regardless of the device's materials. But when Rand and his team incorporated disorder into the way they calculated energy loss and tested various devices, they found that the level of disorder played an important role in determining the overall energy loss of an organic solar cell.

"As the disorder of a solar cell increases, we see our non-radiative energy loss component - the component that we have control over - grows rapidly," Rand said. "The non-radiative energy loss grows with the square of the disorder component."

After demonstrating that increasing disorder causes energy loss to sharply increase in devices, the researchers were able to make recommendations for materials that minimize disorder and therefore lead to more efficient devices. Since scientists can choose the materials they use as well as how to arrange them in an organic solar cell, they have some control over the level of structural disorder in a given device.

When engineering an organic solar cell, researchers can focus on creating a homogenous mixture of materials, in which the parts of a film are either all crystalline or all amorphous, or a heterogeneous mixture, in which some parts of a film are crystalline and other parts are amorphous.

Through their work, Rand's team demonstrated that when it comes to building organic solar cells, homogeneous mixtures reign supreme. For better-performing organic solar cells, Rand said that scientists should use either highly crystalline or highly amorphous materials and avoid mixing the two within a device.

"If you have anything in between, some heterogeneity in which parts of a film are slightly crystalline and some parts are amorphous, that's when you lose the most energy," Rand said.

This finding breaks with convention, as researchers previously believed that some level of heterogeneity in solar cell mixtures was beneficial for overall performance. But because Rand's team found that heterogeneous device mixtures had high levels of disorder and lost significant amounts of energy, he said that their discovery could provide new focus for researchers as they pursue more efficient organic solar cells.

"Heterogeneity has often been the focal point of devices. Some level of crystallinity was thought to be beneficial. But it turns out that that's not what we saw," said Rand. He pointed out that many of the top-performing organic solar cells today are composed of highly amorphous films, and suggested that with existing technologies, completely amorphous mixtures are more pragmatic than completely crystalline ones.

Although his team's research primarily sought to understand the science behind organic solar cells, Rand is hopeful that others can use their work to build more efficient devices and ultimately reach new performance benchmarks for this promising solar technology.

"This discovery is another aspect of organic solar cells that we can add to what we already know, which will help us improve their efficiency going forward," Rand said.

Research Report:Quantifying the Effect of Energetic Disorder on Organic Solar Cell Energy Loss


Related Links
Princeton University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Sidus Space engages GTM Advanced Structures to integrate space-proven solar panels into LizzieSat
Cape Canaveral FL (SPX) Nov 22, 2022
Sidus Space, Inc. (NASDAQ:SIDU), a Space-as-a-Service company focused on mission critical hardware manufacturing combined with commercial satellite design, manufacture, launch, and data collection, announced their partnership GTM Advanced Structures ("GTM") to integrate their space-proven solar panels into LizzieSat. Sidus Space is in advanced stages of developing LizzieSat, a proprietary partially 3-D printed satellite, expected to launch in 2023. The satellite design utilizes a combination of ei ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
NASA and industry advance jet engines and sustainable fuel compatibility

New project will design first Danish reactor for carbon negative hydrogen production from biogas

Biofuel on the road to energy, cost savings

Project Fierce fuels the future of synthetic jet fuel generation

SOLAR DAILY
A simpler path to better computer vision

Experts from across the disciplines come together at new center to push the boundaries of smart robotics and AI

Flocks of assembler robots show potential for making larger structures

Automation drives income inequality

SOLAR DAILY
Intelligent drones to make wind turbines far more efficient

Nine countries join alliance to boost offshore windpower

UAE, Egypt ink major wind energy deal on COP27 sidelines

US to offer leases for Pacific offshore wind energy platforms

SOLAR DAILY
A greener ride: West Africans switch on to electric motorbikes

How to make future autonomous transportation accessible to everyone

Brussels under pressure to tighten car pollution rules

Farizon's futuristic truck to hit road in 2023

SOLAR DAILY
Generating electricity from tacky tape

Great potential for aquifer thermal energy storage systems

MSU helms $15M project to help make fusion energy a reality

POWER aims to create revolutionary power distribution network

SOLAR DAILY
Ukraine nuclear plants cut from grid after strikes: operator

US to help Thailand develop small nuclear reactors

Argonne releases small modular reactor waste analysis report

French regulator approves state bid to renationalise power giant

SOLAR DAILY
Joy at 'historic' climate damages deal

COP27 agrees to fund climate damages, no progress on emission cuts

Tokyo encourages residents to wear turtlenecks to save energy

US envoy urges Chinese cooperation on emissions cuts

SOLAR DAILY
Brazil's Lula, world leaders bolster UN climate talks

France backs Lula's proposal to hold climate conference in the Amazon

No longer evergreen: Germany eyes diversity to save forests

Subarctic boreal forest, vital for the planet, is at risk









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.