Solar Energy News  
STELLAR CHEMISTRY
New insights into the creation of heavy elements
by Staff Writers
Bonn, Germany (SPX) Dec 03, 2015


In the background is the JUQUEEN supercomputer at the Julich Supercomputing Center (JSC). Image courtesy Julich Research Center. For a larger version of this image please go here.

Alpha particles, as the nuclei of the helium atom are also called, play a decisive role in the formation of heavier elements. Carbon, for instance, is formed from the fusion of these alpha particles.

If another helium nucleus is added, oxygen is formed - another prerequisite for the development of life on Earth. In the current issue of the journal Nature, an international team of researchers is now presenting a new method using supercomputers to create detailed simulations of these birth processes inside stars.

The method reduces the computational effort required and for the first time makes it possible, using the Julich supercomputer JUQUEEN, to do a complete calculation of the scattering process of two alpha particles.

The simulation of the processes that lead to the formation of heavier elements requires great computing power. Even the fastest supercomputers in the world are just able to model the creation of the very light elements. All the protons and neutrons flying around, from which the atomic nuclei are created, interact with one another.

In addition, the wide range of theoretically possible quantum states of each particle must be taken into account. The requisite computational power thus rises exponentially as the number of particles involved increases.

For this reason, so-called ab-initio simulations have thus far been restricted to reactions in which no more than five particles are involved. Such simulation methods are done without additional experimentally determinable parameters. The findings made are thus based only upon the fundamental laws of physics.

With the help of a new computational method, scientists at the Universities of Bonn and Bochum, the Julich research center, and two American universities have now succeeded in modeling a much more complex process.

They examined the scattering, or deflection, of two helium nuclei: a reaction that encompasses a total of 8 nucleons - which is the overall term for protons and neutrons. For their calculations, they used one of the most powerful supercomputers in the world, the JUQUEEN supercomputer at the Julich Supercomputing Center (JSC).

To reduce the enormous computational effort, they used a trick: The researchers placed the nucleons involved not in free space, but on a virtual matrix (the so-called lattice), the state of which can be calculated very efficiently with a large number of parallel processors, as are now being used in supercomputers.

In this way, the computational time is not (as has previously been the case) increased exponentially with the number of nucleons involved, but is instead only quadratic.

The computational time for a system with 16 particles is thus only four times greater than for an 8-particle system. In contrast, if the computational time increased exponentially, a supercomputer such as JUQUEEN would not be occupied for a few weeks, but for several thousand years.

A few years ago, physicists unlocked the secret of the basic conditions for the formation of carbon; the new method now takes researchers tangibly close to another vital creation process: the formation of oxygen, which has been called the "Holy Grail of astrophysics".

Furthermore, the method could also open up new perspectives for simulation calculations in elementary particle physics, in which the focus is not on atomic nuclei but on the behavior of quarks and gluons.

Serdar Elhatisari, Dean Lee, Gautam Rupak, Evgeny Epelbaum, Hermann Krebs, Timo A. Lahde, Thomas Luu, Ulf-G. Meibner: Ab initio alpha-alpha scattering, Nature, DOI: 10.1038/nature16067


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Bonn
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
MUSE observations enable prediction of once-in-a-lifetime supernova replay
Munich, Germany (SPX) Nov 27, 2015
Astronomers have used the Multi Unit Spectroscopic Explorer (MUSE), attached to ESO's Very Large Telescope (VLT) at the Paranal Observatory, to take advantage of a once-in-a-lifetime opportunity to test their understanding of massive clusters of galaxies. They are making the first ever prediction of an observational event in the distant Universe before it actually becomes visible. Images o ... read more


STELLAR CHEMISTRY
First biomethane injected into the grid at a farm in Den Bommel

New step towards producing cheap and efficient renewable fuels

EU clears clean British power plant

Algae could be a new green power source

STELLAR CHEMISTRY
New detector perfect for asteroid mining, planetary research

Human reflexes may keep legged robots from tripping

High-tech Barbie stokes privacy fears

A row-bot that loves dirty water

STELLAR CHEMISTRY
German power giant RWE to spin off renewables business

Big UK cities vow to run on green energy by 2050

SeaPlanner New Features Launched on Nordsee One Offshore Wind Farm

Moventas introduces breakthrough Extra Life technologies for wind industry

STELLAR CHEMISTRY
Volkswagen India to recall 323,700 cars over emissions scandal

French carmakers top European list of low CO2 emitters

Audi to spend 50 mn euros to repair diesel cars in US

German prosecutors say probing VW staff for tax evasion

STELLAR CHEMISTRY
ORNL microscopy captures real-time view of evolving fuel cell catalysts

Physicists unravel behavior of strongly disordered superconductors

Identifying new sources of turbulence in spherical tokamaks

Energy from a fossil fuel without carbon dioxide

STELLAR CHEMISTRY
Foreign groups seek to build Poland's first nuclear plant

Belgium extends lives of ageing nuclear reactors

Too Early to talk about status of Russia-Turkey joint projects

Nuclear agreement between Seoul, Washington comes into effect

STELLAR CHEMISTRY
Decarbonizing tourism: Would you pay US$11 for a carbon-free holiday?

Rich countries must not impose end to 'conventional energy': India PM

Commonwealth sets up $1 billion green finance facility

Fossil fuel divestment drive gathers momentum

STELLAR CHEMISTRY
Tallest trees could die of thirst in rainforest droughts

'Traditional authority' linked to rates of deforestation in Africa

Amazon deforestation leaps 16 percent in 2015

Top civil servants probed over hardwood traffic in Gabon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.