Solar Energy News  
SPACE MEDICINE
New malleable 'electronic skin' self-healable, recyclable
by Staff Writers
Boulder CO (SPX) Feb 12, 2018

This is a section of "e-skin." Image courtesy Jianliang Xiao / University of Colorado Boulder

University of Colorado Boulder researchers have developed a new type of malleable, self-healing and fully recyclable "electronic skin" that has applications ranging from robotics and prosthetic development to better biomedical devices.

Electronic skin, known as e-skin, is a thin, translucent material that can mimic the function and mechanical properties of human skin. A number of different types and sizes of wearable e-skins are now being developed in labs around the world as researchers recognize their value in diverse medical, scientific and engineering fields.

The new CU Boulder e-skin has sensors embedded to measure pressure, temperature, humidity and air flow, said Assistant Professor Jianliang Xiao, who is leading the research effort with CU Boulder chemistry and biochemistry Associate Professor Wei Zhang. It has several distinctive properties, including a novel type of covalently bonded dynamic network polymer, known as polyimine that has been laced with silver nanoparticles to provide better mechanical strength, chemical stability and electrical conductivity.

"What is unique here is that the chemical bonding of polyimine we use allows the e-skin to be both self-healing and fully recyclable at room temperature," said Xiao.

"Given the millions of tons of electronic waste generated worldwide every year, the recyclability of our e-skin makes good economic and environmental sense."

A paper on the subject was published in the journal Science Advances. Co-authors on the study include Zhanan Zou and Yan Li of mechanical engineering and Chengpu Zhu and Xingfeng Lei of chemistry and biochemistry. The study was funded in part by the National Science Foundation.

Many people are familiar with the movie The Terminator, in which the skin of film's main villain is "re-healed" just seconds after being shot, beaten or run over, said Zhang. While the new process is not nearly as dramatic, the healing of cut or broken e-skin, including the sensors, is done by using a mix of three commercially available compounds in ethanol, he said.

Another benefit of the new CU Boulder e-skin is that it can be easily conformed to curved surfaces like human arms and robotic hands by applying moderate heat and pressure to it without introducing excessive stresses.

"Let's say you wanted a robot to take care of a baby," said Zhang.

"In that case you would integrate e-skin on the robot fingers that can feel the pressure of the baby. The idea is to try and mimic biological skin with e-skin that has desired functions."

To recycle the skin, the device is soaked into recycling solution, making the polymers degrade into oligomers (polymers with polymerization degree usually below 10) and monomers (small molecules that can be joined together into polymers) that are soluble in ethanol. The silver nanoparticles sink to the bottom of the solution.

"The recycled solution and nanoparticles can then be used to make new, functional e-skin," said Xiao.


Related Links
University of Colorado at Boulder
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Self-sealing miniature 'wound' created by engineers
Atlanta GA (SPX) Feb 14, 2018
Biomedical engineers have developed a miniature self-sealing model system for studying bleeding and the clotting of wounds. The researchers envision the device as a drug discovery platform and potential diagnostic tool. A description of the system, and representative movies, were published Tuesday online by Nature Communications. Lead author Wilbur Lam, MD, PhD says that blood clotting involves the damaged blood vessel, platelets, blood clotting proteins that form a net-like mesh, and the fl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Calculating the CO2 emissions of biofuels is not enough

Bio-renewable process could help 'green' plastic

To maximize sugarcane harvesting, use the right blade

The making of biorelevant nanomaterials

SPACE MEDICINE
Integration of AI and robotics with materials sciences will lead to new clean energy technology

Can a cockroach teach a robot how to scurry across rugged terrain?

Quantum algorithm could help AI think faster

Army researchers develop new algorithms to train robots

SPACE MEDICINE
Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

Scotland sets up $83 million low-carbon fund

German offshore wind farm closer to powering mainland

SPACE MEDICINE
Waymo, Uber end trade secrets theft trial with settlement

At trial, former Uber CEO seeks to fend off conspiracy talk

Nissan to invest $9.5 billion in China to drive sales

Tesla aims to calm fears over Model 3 production

SPACE MEDICINE
Clemson researchers blaze new ground in wireless energy generation

Using lithium to reduce instabilities in fusion plasmas

Powerful LED-based train headlight optimized for energy savings

Recycling and reusing worn cathodes to make new lithium ion batteries

SPACE MEDICINE
Turkey's first nuclear power plant set for investor shake-up: reports

Thorium reactors may dispose of enormous amounts of weapons-grade plutonium

Framatome continues ramping up production at its Le Creusot site

USA: Framatome to acquire Instrumentation and Control nuclear business of Schneider Electric

SPACE MEDICINE
Coal phase-out: Announcing CO2-pricing triggers divestment

State utilities called to pass U.S. tax benefits to consumers

Magnetic liquids improve energy efficiency of buildings

US energy watchdog rejects plan to subsidize coal, nuclear sectors

SPACE MEDICINE
Climate: Two Congos set joint approach for peatland help

FSU researchers: Savanna fires pump Central African forests full of nitrogen

Increased UV from ozone depletion sterilizes trees

Cambodian soldier detained after forest patrol deaths









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.