Solar Energy News  
TIME AND SPACE
New manifestation of magnetic monopoles discovered
by Staff Writers
Vienna, Austria (SPX) Dec 14, 2017


A superfluid helium droplet acts as a magnetic monopole.

The startling similarity between the physical laws describing electric phenomena and those describing magnetic phenomena has been known since the 19th century. However, one piece that would make the two perfectly symmetric was missing: magnetic monopoles. While magnetic monopoles in the form of elementary particles remain elusive, there have been some recent successes in engineering objects that behave effectively like magnetic monopoles.

Now, scientists at the Institute of Science and Technology Austria (IST Austria) have shown that there is a much simpler way to observe such magnetic monopoles: they have demonstrated that superfluid helium droplets act as magnetic monopoles from the perspective of molecules that are immersed inside them. Such droplets have been studied for decades, but until now, this fascinating characteristic had gone entirely unnoticed.

When working with electric charge, it is easy to separate the positive and negative poles: the negatively charged electron represents a negative pole, the positively charged proton is the opposite (positive) pole, and each one is an individual particle that can be separated from the other.

With magnets, it seemed that they always have two poles that are impossible to separate: cut a dipole magnet in half and you will end up with two dipole magnets, cut them again and you will just get even smaller dipole magnets, but you will not be able to separate the north from the south pole.

Challenged by this puzzle, scientists put a great deal of effort into constructing systems that effectively act as magnetic monopoles - with success: certain crystal structures were made to behave like magnetic monopoles.

But now, an interdisciplinary team comprising theoretical physicists and a mathematician have discovered that this phenomenon also occurs in molecular systems that do not need to be engineered for this purpose but which have been known of for a long time.

Nanometer-sized drops of superfluid helium with molecules immersed in them have been studied for several decades already, and it is one of the systems that Professor Mikhail Lemeshko and postdoc Enderalp Yakaboylu are particularly interested in.

Previously, Professor Lemeshko proposed a new quasiparticle that drastically simplifies the mathematical description of such rotating molecules, and earlier this year he showed that this quasiparticle, the angulon, can explain observations that had been collected over 20 years. Enderalp Yakaboylu moreover used the angulon to predict previously unknown properties of these systems.

The property in superfluid helium droplets that they now discovered, however, came unexpectedly - and only after they had exchanged ideas with mathematician Andreas Deuchert, who says:

"It was a surprise to all of us to see this characteristic emerge in the equations." At a strongly interdisciplinary institute like IST Austria, such collaborations are not unusual, and interaction between research groups of different fields is fostered.

"In the other experiments they engineered a system to become a monopole. Here, it is the other way round," Enderalp Yakaboylu adds. "The system was well-known. People have been studying rotating molecules for a long time, and only after did we realize that the magnetic monopoles had been there the whole time. This is a completely different viewpoint."

According to the researchers, the discovery opens up new possibilities for studying magnetic monopoles. In particular, the appearance of magnetic monopole in superfluid helium droplets is very different from the other, previously studied, systems.

"The difference is that we are dealing with a chemical solvent. Our magnetic monopoles form in a fluid rather than in a solid crystal, and you can use this system to study magnetic monopoles more easily," Professor Mikhail Lemeshko explains.

Research paper

TIME AND SPACE
Studying heat transfer with computers is easier now
Trieste, Italy (SPX) Nov 30, 2017
"Our goal? To radically innovate numerical simulations in the field of thermal transport to take on the great science and technology issues in which this phenomenon is so central. This new study, which has designed a new method with which to analyse heat transfer data more efficiently and accurately, is an important step in this direction". This is how Stefano Baroni describes this new res ... read more

Related Links
Institute of Science and Technology Austria
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Bristol scientists turn beer into fuel

NREL develops novel method to produce renewable acrylonitrile

Algae could feed and fuel planet with aid of new high-tech tool

NREL research finds a sweet spot for engineering better cellulose-degrading enzymes

TIME AND SPACE
Speedy cockroaches help researchers train robots to walk

Not Your Grandpa's Robot: Russian Robot 'FEDOR' May Become Self-Learning

'Grinch bots' may steal Christmas by snatching up prized toys

Tokyo airport to be 'scattered' with robots for 2020 Olympics

TIME AND SPACE
Construction to start on $160 million Kennedy Energy Park in North Queensland

U.S. wind turbines getting taller and more efficient

New wind farm in service off the British coast

End tax credits for wind energy, Tennessee Republican says

TIME AND SPACE
Singapore launches electric car-sharing service

Chinese auto giant to end petrol vehicle sales by 2025

Volkswagen boss urges end to diesel tax breaks

Chinese electric carmaker to open Morocco plant

TIME AND SPACE
New test procedure for developing quick-charging lithium-ion batteries

Scientists create stretchable battery made entirely out of fabric

Nuclear fusion project faces delay over US budget cuts: director

Army researchers seek better batteries

TIME AND SPACE
Defects found at China nuclear reactor project

Mainz physicists propose a new method for monitoring nuclear waste

Australian waste treatment technology plays major role in management of radioactive waste

Cairo, Moscow sign contract for Egypt's first nuclear plant

TIME AND SPACE
US void hard to miss at Paris climate summit

To save climate, stop investing in fossil fuels: economists

Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

TIME AND SPACE
African deforestation not as great as feared

Forests are the key to fresh water

US agency confirms Canada softwood lumber hurting US industry

Flying laboratory reveals crucial tropical forest conservation targets in Borneo









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.