Solar Energy News  
ENERGY TECH
New material to enhance battery life
by Staff Writers
Moscow, Russia (SPX) Feb 25, 2016


Polyhedral representation of the crystal structure of fluoride-phosphate of vanadium and potassium. The yellow denotes a three-dimensional channel system, which provides rapid transport of Li+ ions. Image courtesy Stanislav Fedotov. For a larger version of this image please go here.

Nowadays Li-ion batteries power a wide range of electronic devices: mobile phones, tablets, laptops. They became popular in 90s and subsequently ousted widespread nickel-metal hydride batteries.

However, Li-ion batteries suffer a number of disadvantages. For example, their capacity may drop when temperature falls below zero. The price is also discomforting, which is mostly caused by use of expensive lithium-containing materials. For instance, Li-ion batteries make about half a price of a popular electro car Tesla Model S. On the other hand, Li-ion batteries are compact, easy to use and highly capacious, which means that your device would live long having a relatively small battery.

A key element of the Li-ion batteries limiting its capacity is a material used for its cathode. For the majority of the materials their capacity limit has already been reached. Hence, scientists and engineers are actively searching for new cathode materials capable of recharging completely within minutes, operate under high current densities, and store more energy.

One of the most prospective classes of cathode materials for a new generation of Li-ion batteries are fluoride-phosphates of transition metals.

The work directed by Prof. Evgeny Antipov (correspondent member of the Russian Academy of Sciences and the head of the MSU Electrochemistry Department) was carried out by a team of MSU research scientists together with their Russian and Belgian colleagues. It was devoted to creation of a new high-power cathode material based on a fluoride-phosphate of vanadium and potassium for Li-ion batteries. The results were published in Chemistry of Materials (current IF - 8.354)

'The work is based on a simple idea of geometric and crystal-chemical conformity of ionic sublattices,' - says Stanislav Fedotov, one of the authors, junior research scientist at Electrochemistry Department, Faculty of Chemistry, MSU.

The scientists succeeded to stabilize a unique crystal structure, which provides a fast transport of lithium ions through spatial cavities and channels. Consequently, the suggested cathode material demonstrated high charge/discharge rates (down to 90 seconds) retaining more than 75% of an initial specific capacity. With its morphology and composition optimized, this material may become a serious contender to such well-known and commercialized high-power cathode materials as NaSICON.

According to the authors, the results of the presented work may not only open up ample opportunities in searching and further synthesis of new cathode materials for Li-ion batteries, but also promote the development of a new battery type where a role of a mobile ion (a charge carrier) would be performed by potassium ions instead of lithium.

'It is assumed that such batteries would not only deliver high energy density, but would also be economically attractive due to a replacement of expensive lithium-containing components with cheaper and hence affordable potassium-containing analogues' - explains Stanislav Fedotov.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Lomonosov Moscow State University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
New synthesis method developed at UEF opens up new possibilities for Li-ion batteriess
Joensuu, Finland (SPX) Feb 22, 2016
Lithium-ion batteries are a rapidly growing energy storage method due to their high energy density, especially in mobile applications such as personal electronics and electric cars. However, the materials currently used in Li-ion batteries are expensive, many of them, like lithium cobalt oxide (belonging to the EU Critical Raw Materials, CRMs), are difficult to handle and dispose of. Addit ... read more


ENERGY TECH
WELTEC Group Acquires 3.3 MW Biogas Plant

ONR engineers innovative research in synthetic biology

Best regions for growing bioenergy crops identified

Titan probes depths of biofuel's biggest barrier

ENERGY TECH
Underwater robots can be programmed to make independent decisions

Can fables, fairy tales teach robots morality?

A global Olympic-style competition to advance assistive and robotic technologies

When machines can do any job, what will humans do?

ENERGY TECH
Adwen Chooses Sentient Science For Computational Gearbox Testing

EU boasts of strides in renewable energy

Offshore U.K. to host world's largest wind farm

Germany aims to build wind energy reputation

ENERGY TECH
Some distractions while driving are more risky than others

Uber defends driver scrutiny in wake of shooting

Volkswagen chief predicts 'renaissance' in US business

China auto sales jump nearly 8% in January: group

ENERGY TECH
Understanding how turbulence drains heat from fusion reactors

New synthesis method developed at UEF opens up new possibilities for Li-ion batteriess

Cogeneration sector supportive of a comprehensive follow-up to the Heating and Cooling Strategy

Creation of Jupiter interior, a step towards room temp superconductivity

ENERGY TECH
First Unit of Russia-India Kudankulam NPP Reconnected to Grid

New nuclear plants indication of growing trust between Russia and Iran

US Westinghouse Fuel Delivered to Biggest Ukrainian Nuclear Power Plant

Radioactive water leak suspends Japan reactor start-up

ENERGY TECH
New model maps energy usage of every building in Boston

The forecast for renewable energy in 2016

US, Canada and Mexico sign clean energy pact

Supreme Court deals blow to Obama climate plan

ENERGY TECH
Benefits of re-growing secondary forests explored through international collaboration

Drones learn to search forest trails for lost people

Secondary tropical forests absorb carbon at higher rate than old-growth forests

Forest losses increase local temperatures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.