![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Portsmouth UK (SPX) Jan 11, 2019
New research could lead to the design of new materials to help improve the performance of perovskite solar cells (PSCs). Perovskite solar cells are an emerging photovoltaic technology that has seen a remarkable rise in power conversion ef?ciency to above 20 per cent. However, PSC performance is affected as the perovskite material contains ion defects that can move around over the course of a working day. As these defects move, they affect the internal electric environment within the cell. The Perovskite material is responsible for absorbing light to create electronic charge, and also for helping to extract the charge into an external circuit before it is lost to a process called 'recombination'. The majority of detrimental recombination can occur in different locations within the solar cell. In some designs it occurs predominantly within the perovskite, while in others it happens at the edges of the perovskite where it contacts the adjacent materials known as transport layers. Researchers from the Universities of Portsmouth, Southampton and Bath have now developed a way to adjust the properties of the transport layers to encourage the ionic defects within the perovskite to move in such a way that they suppress recombination and lead to more efficient charge extraction - increasing the proportion of the light energy falling on the surface of the cell that can ultimately be used. Dr Jamie Foster from the University of Portsmouth, who was involved in the study, said: "Careful cell design can manipulate the ionic defects to move to regions where they enhance the extraction of electronic charge, thereby increasing the useful power that a cell can deliver." The study, published in Energy and Environmental Science, showed that the performance of PSCs are strongly dependent on the permittivity (the measure of a material's ability to store an electric field) and the effective doping density of the transport layers. Dr Foster said: "Understanding how and which transport layer properties affect cell performance is vital for informing the design of cell architectures in order to obtain the most power while minimising degradation. "We found that ion movement plays a signi?cant role in the steady-state device performance, through the resulting accumulation of ionic charge and band bending in narrow layers adjacent to the interfaces between the perovskite and the transport layers. The distribution of the electric potential is key in determining the transient and steady-state behaviour of a cell. "Further to this, we suggest that the doping density and/or permittivities of each transport layer may be tuned to reduce losses due to interfacial recombination. Once this and the rate limiting charge carrier has been identi?ed, our work provides a systematic tool to tune transport layer properties to enhance performance." The researchers also suggest that PSCs made using transport layers with low permittivity and doping are more stable, than those with high permittivity and doping. This is because such cells show reduced ion vacancy accumulation within the perovskite layers, which has been linked to chemical degradation at the edges of the perovskite layer.
![]() ![]() NREL details great potential for floating PV systems Golden CO (SPX) Jan 09, 2019 National Renewable Energy Laboratory (NREL) researchers estimate that installing floating solar photovoltaics on the more than 24,000 man-made U.S. reservoirs could generate about 10 percent of the nation's annual electricity production. Their findings, published in the journal Environmental Science and Technology, reveal for the first time the potential for floating PV to produce electricity in the United States. While the United States was the first to demonstrate floating PV panels - with ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |