Subscribe free to our newsletters via your
. Solar Energy News .




TIME AND SPACE
New model clarifies photoexcited thin-film lattice dynamics
by Staff Writers
Washington DC (SPX) Nov 19, 2014


This image depicts time-resolved X-ray diffraction on a laser-excited thin film which is transiently split in an expanded and a compressed sub layer due to coherent lattice dynamics. Image courtesy Daniel Schick.

A research team from Germany developed an analytical model to describe the structural dynamics of photoexcited thin films and verified it by ultrafast X-ray diffraction. Lattice dynamics, atomic movements in a crystal structure, can influence the physical and chemical properties of a material.

The phenomenon can be directly studied using ultrafast X-ray diffraction, in which femtosecond X-ray pulses take snapshots of the atomic positions in a crystal by interacting with the structure at the core electronic level.

However, no comprehensive study has yet been carried out to characterize the photoexcited lattice dynamics of an opaque thin film on a semi-infinite transparent substrate. As a result, ultrafast X-ray diffraction data for such samples can be challenging to interpret.

Now a new study in the journal Structural Dynamics, from AIP Publishing, builds a model to help interpret such data.

To study this common scenario, the researchers excited a thin film of metallic SrRuO3 deposited on a transparent SrTiO3 substrate with femtosecond near infrared laser pulses and subsequently probed the atomic structure with equally short hard X-ray pulses.

By comparing the resulting time-resolved diffractograms for different film thicknesses and excitation conditions, they found that the lattice dynamics of the system depended on only four parameters: the thickness of the film, its longitudinal acoustic sound velocity, a scaling factor and a shape factor.

"The coherent lattice dynamics are involved in nearly any ultrafast experiment on laser-excited thin films and their time scale is mainly determined by the film thickness and its longitudinal sound velocity," said Daniel Schick, a researcher at the University of Potsdam. They then incorporated these factors into an analytical model that can be used to explain the observed variation in the X-ray diffraction of different thin films.

Their model allows them to describe a rather puzzling finding: although a thin film is essentially heated by the laser excitation and should rapidly expand, a significant part of the film is compressed for a short time of only a few picoseconds after the laser pulse hits the sample. In the ultrafast X-ray diffraction this manifests in a transient "splitting" of the thin film's Bragg peak, which provides direct information on the average atomic distances in the film.

This observation can be directly linked to the spatial excitation profile of the thin opaque film, which is, in the simplest case, given by the optical absorption length of the laser light and is included as the shape factor in the analytical model.

After developing their model using this relatively simple model system, the researchers have applied it to study more complex ones, such as with a strong coupling of the lattice to charge or spin degrees of freedom in ferroelectric and magnetic materials.

"Ultrafast lattice response of photoexcited thin films 1 studied by X-ray diffraction," by Daniel Schick, Marc Herzog, Andre Bojahr, Wolfram Leitenberger, Andreas Hertwig, Roman Shayduk and Matias Bargheer appears in the journal Structural Dynamics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Twisted light waves sent across Vienna
Washington DC (SPX) Nov 13, 2014
A group of researchers from Austria have sent twisted beams of light across the rooftops of Vienna. It is the first time that twisted light has been transmitted over a large distance outdoors, and could enable researchers to take advantage of the significant data-carrying capacity of light in both classical and quantum communications. The results of the experiment have been published in th ... read more


TIME AND SPACE
WELTEC builds Biogas Plants in Greece

Lockheed Martin to build 5-megawatt bioenergy facility in Germany

DARPA's EZ BAA Cuts Red Tape to Speed Funding of New Biotech Ideas

New process transforms wood, crop waste into valuable chemicals

TIME AND SPACE
An alternative to 'Turing Test'

Can robots help stop the Ebola outbreak?

Elon Musk thinks robots could turn on us in the next five years

DARPA-Funded Inflatable Robotics Helps Spark Idea for Silver Screen Star

TIME AND SPACE
Labor building behind East Coast wind energy industry

Moventas completes first ever Clipper up-tower service

Momentum builds behind U.S. offshore wind sector

Second stage of Snowtown Wind Farm blows away the competition

TIME AND SPACE
Uber hits brakes on talk of finding dirt on reporters

Dongfeng, Huawei partner for Internet-enabled cars

Toyota rolls out world's first mass market fuel-cell car

QUT leading the charge for panel-powered car

TIME AND SPACE
Germany eyes capping coal use to meet emissions target

A coating that protects against heat and oxidation

China seeks to cap coal use at 4.2 bn tonnes by 2020

Chinese power companies pursue smart grids

TIME AND SPACE
Much to lose for Iran's Rouhani if no nuclear pact

Understanding nuclear reactor fuel behavior during a severe event

France's Areva on the ropes after it suspends targets

Jordan says able to export uranium by 2020

TIME AND SPACE
Bit Stew Systems Announce Major Expansion in Australia

After nuclear phase-out, Germany debates scrapping coal

China's new 'Great Wall' not so great

China eyes investments in Slovenia infrastructure

TIME AND SPACE
As elephants go, so go the trees

Clues to trees' salt tolerance found in native habitat, leaf traits

Deforestation in Brazil's Amazon 'surges 450%'

Protecting forests alone would not halt land-use change emissions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.