Solar Energy News  
CHIP TECH
New molecular wires for single-molecule electronic devices
by Staff Writers
Tokyo, Japan (SPX) Aug 31, 2018

The proposed wire is 'doped' with a ruthenium unit that enhances its conductance to unprecedented levels compared with previously reported similar molecular wires.

Scientists at Tokyo Institute of Technology designed a new type of molecular wire doped with organometallic ruthenium to achieve unprecedentedly higher conductance than earlier molecular wires. The origin of high conductance in these wires is fundamentally different from similar molecular devices and suggests a potential strategy for developing highly conducting "doped" molecular wires.

Since their conception, researchers have tried to shrink electronic devices to unprecedented sizes, even to the point of fabricating them from a few molecules. Molecular wires are one of the building blocks of such minuscule contraptions, and many researchers have been developing strategies to synthesize highly conductive, stable wires from carefully designed molecules.

A team of researchers from Tokyo Institute of Technology, including Yuya Tanaka, designed a novel molecular wire in the form of a metal electrode-molecule-metal electrode (MMM) junction including a polyyne, an organic chain-like molecule, "doped" with a ruthenium-based unit Ru(dppe)2.

The proposed design, featured in the cover of the Journal of the American Chemical Society, is based on engineering the energy levels of the conducting orbitals of the atoms of the wire, considering the characteristics of gold electrodes.

Using scanning tunneling microscopy, the team confirmed that the conductance of these molecular wires was equal to or higher than those of previously reported organic molecular wires, including similar wires "doped" with iron units.

Motivated by these results, the researchers then went on to investigate the origin of the proposed wire's superior conductance. They found that the observed conducting properties were fundamentally different from previously reported similar MMM junctions and were derived from orbital splitting.

In other words, orbital splitting induces changes in the original electron orbitals of the atoms to define a new "hybrid" orbital facilitating electron transfer between the metal electrodes and the wire molecules. According to Tanaka, "such orbital splitting behavior has rarely been reported for any other MMM junction".

Since a narrow gap between the highest (HOMO) and lowest (LUMO) occupied molecular orbitals is a crucial factor for enhancing conductance of molecular wires, the proposed synthesis protocol adopts a new technique to exploit this knowledge, as Tanaka adds "The present study reveals a new strategy to realize molecular wires with an extremely narrow HOMO?LUMO gap via MMM junction formation."

This explanation for the fundamentally different conducting properties of the proposed wires facilitate the strategic development of novel molecular components, which could be the building blocks of future minuscule electronic devices.

Research paper


Related Links
Tokyo Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Physicists show first proof of Dicke cooperativity in a matter-matter system
Houston TX (SPX) Aug 28, 2018
After their recent pioneering experiments to couple light and matter to an extreme degree, Rice University scientists decided to look for a similar effect in matter alone. They didn't expect to find it so soon. Rice physicist Junichiro Kono, graduate student Xinwei Li and their international colleagues have discovered the first example of Dicke cooperativity in a matter-matter system, a result reported in Science this week. The discovery could help advance the understanding of spintronics an ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Methane to syngas catalyst: two for the price of one

Biodegradable plastic blends offer new options for disposal

Breakthrough could see bacteria used as cell factories to produce biofuels

Serendipitous discovery by IUPUI researchers may lead to eco-friendly lubricant

CHIP TECH
If military robot falls, it can get itself up

Robot teachers invade Chinese kindergartens

UNC builds better particle tracking software using artificial intelligence

Activists urge killer robot ban 'before it is too late'

CHIP TECH
Wind Power: It is all about the distribution

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

Iran opens 61 MW wind farm in Qazvin province

CHIP TECH
China launches safety audit on Didi, ride-hail firms

California advances electric vehicle legislation

Tesla wins green rebate lawsuit against Canada's Ontario province

China's Didi apologises for safety lapses after murder

CHIP TECH
Device harvests energy from low-frequency vibrations

New technology improves hydrogen manufacturing

Cathode fabrication for oxide solid-state batteries at room temperature

FeCo-selenide as a next-generation material for energy storage devices

CHIP TECH
MIT Energy Initiative study reports on the future of nuclear energy

Austria to appeal EU court ruling on UK nuclear plant

S.Africa drops Zuma's nuclear expansion dreams

Experts voice safety concerns about new pebble-bed nuclear reactors

CHIP TECH
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

CHIP TECH
Species-rich forests better compensate environmental impacts

Tree species richness in Amazonian wetlands is three times greater than expected

Carbon reserves in Central American soils still affected by ancient Mayan deforestation

'Natural enemies' theory doesn't fully explain rainforests' biodiversity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.