Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
New options for spintronic devices
by Staff Writers
Berlin, Germany (SPX) May 20, 2015


A thin magnetic FeRh film is grown onto a ferroelastic BTO substrate with two different crystal domains a and c. At 0 Volt ferromagnetic domains (red-blue pattern) are observed above BTO a-domains, whereas above c-domains the net magnetization is zero. At 50 Volt all BTO domains are converted into c-domains, which switches off ferromagnetic domains in FeRh. Image courtesy HZB. For a larger version of this image please go here.

Scientists from Paris and Helmholtz-Zentrum Berlin have been able to switch ferromagnetic domains on and off with low voltage in a structure made of two different ferroic materials. The switching works slightly above room temperature. Their results, which are published online in Scientific Reports, might inspire future applications in low-power spintronics, for instance for fast and efficient data storage.

Information can be written as a sequence of bit digits, i.e. "0" and "1". Materials which display ferromagnetism are currently used to handle or store such bits of information in magnetic memories by controlling the magnetization strength or direction of the individual bits via magnetic fields.

But the use of magnetic fields goes along with high power consumption. Now, a comparatively low power approach which uses electric fields (voltages) instead to write magnetic information might do the trick, as demonstrated by HZB scientists in collaboration with Lee C. Phillips and his French colleagues.

Sample of two different ferroic materials
Their sample consisted of two different ferroic layers: on a ferroelastic BaTiO3 (BTO) substrate a thin film of ferromagnetic FeRh was grown. Last year, they observed already that a small voltage across the BTO could change magnetic order in the ferromagnetic FeRh film via a strong magnetoelectric coupling between both layers.

Now, they could see much larger effects. "We could switch ferromagnetic states in the FeRh film completely on and off with a low voltage applied to the underlaying BTO", reports Sergio Valencia, the HZB scientist who led the study. With XPEEM imaging at BESSY II they observed the transition between different magnetic orders in the FeRh layer, driven by an electrical field applied across the BTO substrate.

Electric fields, strain, magnetic order and temperature
It works because a low voltage on the BTO substrate deforms its crystal structure via a ferroelastic effect, creating a strain. This strain is transferred to the FeRh film grown on top of the BTO and influences its magnetic order.

As physicist Valencia puts it: "By the strain on the BTO substrate we can increase the transition temperature of FeRh, a characteristic temperature which separates antiferromagnetic order from ferromagnetic order. Below this temperature, FeRh is antiferromagnetic (net magnetic moment is zero), above it becomes ferromagnetic.

Normally this transition temperature for FeRh is around 90C, but under strain (through the voltage applied to the BTO substrate) it is shown to rise to ca. 120 C. To demonstrate this effect, the experiment was conducted at 115C a temperature at which in absence of strain FeRh was observed to be ferromagnetic. When the voltage was applied to the BTO substrate, the strain transferred from BTO to the FeRh increased the temperature needed to have a ferromagnetic order and the FeRh became antiferromagnetic.

Switiching near room temperature
"This is quite relevant. Here we have a structure showing switching effects between two different magnetic states close to room temperature. This is precisely what you need in order to develop room temperature working devices. Moreover, to switch between these two states we use electric fields instead of magnetic fields which consumes less energy. In the near future we aim at doping the FeRh film with palladium to get effects even closer to room temperature." Valencia says.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
The next step in DNA computing: GPS mapping
Washington DC (SPX) May 14, 2015
Conventional silicon-based computing, which has advanced by leaps and bounds in recent decades, is pushing against its practical limits. DNA computing could help take the digital era to the next level. Scientists are now reporting progress toward that goal with the development of a novel DNA-based GPS. They describe their advance in ACS' The Journal of Physical Chemistry B. Jian-Jun Shu an ... read more


CHIP TECH
A model for bioenergy feedstock/vegetable double-cropping systems

WSU researchers produce jet fuel compounds from fungus

For biofuels and climate, location matters

Ethanol may release more of some pollutants than previously thought

CHIP TECH
Exploring a new frontier of cyber-physical systems: The human body

Clinical trial shows intuitive control of robotic arm using thought

Implants read intentions of tetraplegic patient from brain activity

Fast Track Program invites non-traditional Roboticists to bolster security

CHIP TECH
EOLOS floating buoy scoops innovation award

Offshore wind turbine construction could be putting seals' hearing at risk

Build for Rhode Island wind farm one step closer

English Channel to host wind farm

CHIP TECH
Can virtual drivers resembling the user increase trust in smart cars

US pushes pedal on car-to-car communication

Google self-driving prototype cars to hit public roads

Out with heavy metal

CHIP TECH
New class of swelling magnets have the potential to energize the world

Star power: Troubled ITER nuclear fusion project looks for new path

Tiny grains of lithium dramatically improve performance of fusion plasma

Calgary to lead CREATE student training program in carbon capture

CHIP TECH
China's nuclear power capacity set to reach 30 mln kilowatts

DEQ: Decision on Great Lakes Nuclear Waste Site'Out of Our Hands'

Japan court upholds nuclear power plant injunction

Japan nuclear watchdog OKs one more reactor

CHIP TECH
San Francisco Launches HERO Clean Energy Program

American energy use up slightly, carbon emissions almost unchanged

Canada plans 30% CO2 emissions cut by 2030: minister

Carbon price vital for zero-emission goal: World Bank

CHIP TECH
Drought-induced tree mortality accelerating in forests

Study reveals how eastern US forests came to be

Impact of increased atmospheric CO2 concentration on European trees

Ecuador breaks Guinness reforestation record




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.