Solar Energy News  
CARBON WORLDS
New polymer membrane tech improves efficiency of CO2 capture
by Staff Writers
Chapel Hill NC (SPX) Apr 04, 2022

stock illustration only

Researchers have developed a new membrane technology that allows for more efficient removal of carbon dioxide (CO2) from mixed gases, such as emissions from power plants.

"To demonstrate the capability of our new membranes, we looked at mixtures of CO2 and nitrogen, because CO2/nitrogen dioxide mixtures are particularly relevant in the context of reducing greenhouse gas emissions from power plants," says Rich Spontak, co-corresponding author of a paper on the work. "And we've demonstrated that we can vastly improve the selectivity of membranes to remove CO2 while retaining relatively high CO2 permeability."

"We also looked at mixtures of CO2 and methane, which is important to the natural gas industry," says Spontak, who is a Distinguished Professor of Chemical and Biomolecular Engineering and Professor of Materials Science and Engineering at North Carolina State University. "In addition, these CO2-filtering membranes can be used in any situation in which one needs to remove CO2 from mixed gases - whether it's a biomedical application or scrubbing CO2 from the air in a submarine."

Membranes are an attractive technology for removing CO2 from mixed gases because they do not take up much physical space, they can be made in a wide variety of sizes, and they can be easily replaced. The other technology that is often used for CO2 removal is chemical absorption, which involves bubbling mixed gases through a column that contains a liquid amine - which removes CO2 from the gas. However, absorption technologies have a significantly larger footprint, and liquid amines tend to be toxic and corrosive.

These membrane filters work by allowing CO2 to pass through the membrane more quickly than the other constituents in the mixed gas. As a result, the gas passing out the other side of the membrane has a higher proportion of CO2 than the gas entering the membrane. By capturing the gas passing out of the membrane, you capture more of the CO2 than you do of the other constituent gases.

A longstanding challenge for such membranes has been a trade-off between permeability and selectivity. The higher the permeability, the more quickly you can move gas through the membrane. But when permeability goes up, selectivity goes down - meaning that nitrogen, or other constituents, also pass through the membrane quickly - reducing the ratio of CO2 to other gases in the mixture. In other words, when selectivity goes down you capture relatively less CO2.

The research team, from the U.S. and Norway, addressed this problem by growing chemically active polymer chains that are both hydrophilic and CO2-philic on the surface of existing membranes. This increases CO2 selectivity and causes relatively little reduction in permeability.

"In short, with little change in permeability, we've demonstrated that we can increase selectivity by as much as about 150 times," says Marius Sandru, co-corresponding author of the paper and senior research scientist at SINTEF Industry, an independent research organization in Norway. "So we're capturing much more CO2, relative to the other species in gas mixtures."

Another challenge facing membrane CO2 filters has been cost. The more effective previous membrane technologies were, the more expensive they tended to be.

"Because we wanted to create a technology that is commercially viable, our technology started with membranes that are already in widespread use," says Spontak. "We then engineered the surface of these membranes to improve selectivity. And while this does increase the cost, we think the modified membranes will still be cost effective."

"Our next steps are to see the extent to which the techniques we developed here could be applied to other polymers to get comparable, or even superior, results; and to upscale the nanofabrication process," Sandru says. "Honestly, even though the results here have been nothing short of exciting, we haven't tried to optimize this modification process yet. Our paper reports proof-of-concept results."

The researchers are also interested in exploring other applications, such as whether the new membrane technology could be used in biomedical ventilator devices or filtration devices in the aquaculture sector.

The researchers say they are open to working with industry partners in exploring any of these questions or opportunities to help mitigate global climate change and improve device function.

The paper, "An Integrated Materials Approach to Ultrapermeable and Ultraselective CO2 Polymer Membranes," is published in the journal Science. The paper was co-authored by Wade Ingram, a former Ph.D. student at NC State; Eugenia Sandru and Per Stenstad of SINTEF Industry; and Jing Deng and Liyuan Deng of the Norwegian University of Science and Technology.

The work was done with support from the Research Council of Norway; UEFSCDI Romania; the National Science Foundation, under grant number ECCS-2025064; and Kraton Corporation.

Research Report: "An Integrated Materials Approach to Ultrapermeable and Ultraselective CO2 Polymer Membranes"


Related Links
North Carolina State University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Graphene crystals grow better under copper cover
Thuwal, Saudi Arabia (SPX) Apr 01, 2022
An approach that produces single-crystal graphene sheets on large-scale electrically insulating supports could help with the development of next-generation nanomaterial-based devices, such as very light and thin touchscreens, wearable electronics and solar cells. Most graphene-based electronic devices require insulating supports. Yet, high-quality graphene films destined for industrial use typically are grown on a metal substrate, such as copper foil, before being transferred to an insulating supp ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Fuel from waste wood

Breaking down plastic into its constituent parts

Could we make cars out of petroleum residue?

Conversion process turns pollution into cash

CARBON WORLDS
Launching robots into lunar caves

Australian startups join forces to test AI computing in space

The next generation of robots will be shape-shifters

How to help humans understand robots

CARBON WORLDS
Bionic wing flaps improve wind energy efficiency

India to build Sri Lanka wind farms after China pushed aside

Netherlands doubles wind energy targets for 2030

The Med gets first offshore wind farm as Italy vows energy revolution

CARBON WORLDS
Interurban Vehicle - Green and comfortable travel even on long journeys

Uber to integrate its network with New York yellow cabs

Toyota pauses most Japan production after quake

Indonesia begins electric car production with Hyundai plant

CARBON WORLDS
Nuclear fusion hit a milestone thanks to better reactor walls

The material that could save industries heat

New 3D thermal management network could increase the safety of electric car batteries

Light may increase performance of fuel cells and lithium-ion batteries

CARBON WORLDS
UK may build seven nuclear plants by 2050: minister

After Ukraine, UN atomic watchdog chief visits Russia

UN atomic watchdog chief visits Ukraine nuclear plant

UN nuclear watchdog head visits Ukraine to discuss safety

CARBON WORLDS
Govts, businesses 'lying' on climate efforts: UN chief

Mexico, US talks fail to end energy reform frictions

IEA approves third term for chief pushing clean energy

Study shows that realistic models could make for more environmental wins

CARBON WORLDS
Indigenous lands key to climate goals in Latin America: report

Ivory Coast walls up forest to fend off encroaching city

Lost children survive 25-day ordeal in Amazon

How Indigenous burning shaped the Klamath's forests for a millennia









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.