Solar Energy News  
MOON DAILY
New remote sensing technique could bring key planetary mineral into focus
by Staff Writers
Providence RI (SPX) Nov 03, 2020

A mountain peak at the center of the Moon's Copernicus Crater has an abundance of olivine, a mineral that can help scientists understand the internal evolution of planetary bodies. A new technique developed by Brown University researchers can help to study olivine from afar.

Planetary scientists from Brown University have developed a new remote sensing method for studying olivine, a mineral that could help scientists understand the early evolution of the Moon, Mars and other planetary bodies.

"Olivine is understood to be a major component in the interiors of rocky planets," said Christopher Kremer, a Ph.D. candidate at Brown University and lead author of a new paper describing the work. "It's a primary constituent of Earth's mantle, and it's been detected on the surfaces of the Moon and Mars in volcanic deposits or in impact craters that bring up material from the subsurface."

Current remote sensing techniques are good at spotting olivine from orbit, Kremer says, but scientists would like to do more than just spot it. They'd like to be able to learn more about its chemical makeup. All olivines have silicon and oxygen, but some are rich in iron while others have lots of magnesium.

"The composition tells us something about the environment in which the minerals formed, particularly the temperature," Kremer said. "Higher temperatures during formation yield more magnesium, while lower temperatures yield more iron. Being able to tease out those compositions could tell us something about how the interiors of these planetary bodies have evolved since their formation."

To find out if there might be a way to see that composition using remote sensing, Kremer worked with Brown professors Carle Pieters and Jack Mustard, as well as mountains of data from the Keck/NASA Reflectance Experiment Laboratory (RELAB), which is housed at Brown.

One method researchers use to study rocks on other planetary bodies is spectroscopy. Particular elements or compounds reflect or absorb different wavelengths of light to various degrees. By looking at the light spectra rocks reflect, scientists can get an idea of what compounds are present. RELAB makes high-precision spectral measurements of samples for which the composition is already determined using other laboratory techniques. By doing that, the lab provides a ground truth for interpreting spectral measurements taken by spacecraft looking at other planetary bodies.

In poring through data from olivine samples examined over the years at RELAB, Kremer found something interesting hiding in a small swath of wavelengths that's overlooked by the kinds of spectroscopes that fly on orbital spacecraft.

"Over the past few decades, there's been a lot of interest in near infrared spectroscopy and middle infrared spectroscopy," Kremer said. "But there's a small range of wavelengths between those two that's left out, and those are the wavelengths I was looking at."

Kremer found that those wavelengths, a band between 4 and 8 microns, could predict the amount of magnesium or iron in an olivine sample to within about 10% of the actual content. That's far better than can be done when those wavelengths are ignored.

"With the instruments we have now, we could say maybe we have a little bit of this or a little bit of that," Mustard said. "But with this we're able to really put a number on it, which is a big step forward."

The researchers hope that this study, which is published in Geophysical Research Letters, might provide the impetus to build and fly a spectrometer that captures these previously overlooked wavelengths. Such an instrument could pay immediate dividends in understanding the nature of olivine deposits on the Moon's surface, Kremer says.

"The olivine samples brought back during the Apollo program that we've been able to study here on Earth vary widely in magnesium composition," Kremer said. "But we don't know how those differing compositions are distributed on the Moon itself, because we can't see those compositions spectroscopically. That's where this new technique comes in. If we could figure out a pattern to how those deposits are distributed, it could tell us something about the early evolution of the Moon."

There's the potential for other discoveries as well. The airplane-based SOFIA telescope is one of the few non-lab instruments that can look in this forgotten frequency range. The instrument's recent detection of water molecules in sunlit lunar surfaces made use of those frequencies.

"That makes the idea of space-borne spectrometers that can see this range much more attractive, both for water and for rocky material like olivine," Kremer said.

Research paper


Related Links
Brown University
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MOON DAILY
NASA Crowdsources with HeroX to Find Solutions for Unloading Lunar Goods
Houston TX (SPX) Oct 30, 2020
HeroX, the social network for innovation and the world's leading platform for crowdsourced solutions, has launched the crowdsourcing competition "NASA's Lunar Delivery Challenge" on behalf of the NASA Tournament Lab (NTL) and NASA's Langley Research Center. The goal of NASA's Artemis program is to land the first woman and the next man on the surface of the Moon in 2024. By the next decade, NASA hopes to establish a sustained human presence on the Moon. In order to do that, a way to unload all of t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MOON DAILY
Bioenergy research team sequences miscanthus genome

Japan carbon pledge boosts hopes of ammonia backers

Making biodiesel from dirty old cooking oil just got way easier

Greasezilla Announces Plans to Launch Hub-and-Spoke Regional Systems for Biodiesel Manufacturers in 2021

MOON DAILY
"What to Expect When You're Expecting Robots"

Translating lost languages using machine learning

A global collaboration to move artificial intelligence principles to practice

Automated technology allows unparalleled space exploration from Moon, to asteroids, and beyond

MOON DAILY
California offshore winds show promise as power source

MOON DAILY
VW's Traton, Toyota's Hino agree electric truck venture

Charging electric cars up to 90% in 6 minutes

Used car exports drives pollution to developing world

Tesla to recall 30,000 cars from China over suspension defects

MOON DAILY
Predictive model reveals function of promising energy harvester device

Infrared light antenna powers molecular motor

Realistic simulation of plasma edge instabilities in tokamaks

Highview Power and Enlasa to develop giga-scale cryogenic energy storage projects in Latin America

MOON DAILY
Poland reviewing potential BWRX-300 Small Modular Reactor Project

Russian scientists suggested a transfer to safe nuclear energy

The new heavy isotope mendelevium-244 and a puzzling short-lived fission activity

Framatome launches Framatome Defense to support the French national defense industry

MOON DAILY
South Korea to seek carbon neutrality by 2050: Moon

Space to help build a green post-pandemic economy

Japan PM Suga sets 2050 deadline for carbon neutrality

Xi's big carbon promise on the table as China's leaders meet

MOON DAILY
China's most important trees are hiding in plain sight

Reforestation plans in Africa could go awry

US firms fund deforestation, abuses in Amazon: report

Evidence of biodiversity losses found deep inside the rainforest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.