Solar Energy News  
SPACE TRAVEL
New research flies on 21st SpaceX Cargo Mission
by Melissa Gaskill for ISS News
Houston TX (SPX) Nov 18, 2020

A Dragon Cargo spacecraft ready for capture by the ISS Candarm2.

The 21st SpaceX cargo resupply mission that will launch from NASA's Kennedy Space Center in Florida no earlier than December 2, 2020 will carry a variety of critical research and technology demonstrations to the International Space Station. The mission represents the first on an upgraded version of the company's Dragon cargo spacecraft designed to carry more science payloads to and from the space station.

Highlights of the payloads on this mission include:

Microbial meteorite miners
A mixture of meteorite samples and microbes are headed to the space station. Certain microbes form layers on the surface of rock that can release metals and minerals, a process known as biomining. A previous investigation from ESA (European Space Agency), BioRock, examined how microgravity affects the processes involved in biomining. ESA follows up on that work with BioAsteroid, which examines biofilm formation and biomining of asteroid or meteorite material in microgravity.

Researchers are seeking a better understanding of the basic physical processes that control these mixtures, such as gravity, convection, and mixing. Microbe-rock interactions have many potential uses in space exploration and off-Earth settlement. Microbes could break down rocks into soils for plant growth, for example, or extract elements useful for life support systems and production of medicines.

Examining changes in hearts using tissue chips
Microgravity causes changes in the workload and shape of the human heart, and it is still unknown if these changes could become permanent if a person lived more than a year in space. If that were to happen, it is possible it may take the returning astronaut many months to readjust to Earth's gravity. Cardinal Heart studies how changes in gravity affect cardiovascular cells at the cellular and tissue level. The investigation uses 3D engineered heart tissues (EHTs), a type of tissue chip. Results could provide new understanding of heart problems on Earth, help identify new treatments, and support development of screening measures to predict cardiovascular risk prior to spaceflight.

Counting white blood cells in space
HemoCue tests the ability of a commercially available device to provide quick and accurate counts of total and differentiated white blood cells in microgravity. Doctors commonly use the total number of white blood cells and counts of the five different types of white blood cells to diagnose illnesses and monitor a variety of heath conditions on Earth. Verification of an autonomous capability for blood analysis on the space station is an important step toward meeting the health care needs of crew members on future missions.

Building with brazing
SUBSA-BRAINS examines differences in capillary flow, interface reactions, and bubble formation during the solidification of brazing alloys in microgravity. Brazing is a type of soldering used to bond together similar materials, such as an aluminum alloy to aluminum, or dissimilar ones such as aluminum alloy to ceramics, at high temperatures. The technology could serve as a tool for constructing human habitats and vehicles on future space missions as well as for repairing damage caused by micrometeoroids or space debris.

A new and improved door to space
Launching in the trunk of the Dragon capsule, the Nanoracks Bishop Airlock is a commercial platform that can support a variety of scientific work on the space station. Its capabilities include deployment of free-flying payloads such as CubeSats and externally-mounted payloads, housing of small external payloads, jettisoning trash, and recovering external Orbital Replacement Units (ORUs).

ORUs are modular components of the station that can be replaced when needed, such as pumps and other hardware. Roughly five times larger than the airlock on the Japanese Experiment Module (JEM) already in use on the station, the Bishop Airlock allows robotic movement of more and larger packages to the exterior of the space station, including hardware to support spacewalks. It also provides capabilities such as power and Ethernet required for internal and external payloads.

Your brain on microgravity
The Effect of Microgravity on Human Brain Organoids observes the response of brain organoids to microgravity. Small living masses of cells that interact and grow, organoids can survive for months, providing a model for understanding how cells and tissues adapt to environmental changes. Organoids grown from neurons or nerve cells exhibit normal processes such as responding to stimuli and stress. Therefore, organoids can be used to look at how microgravity affects survival, metabolism, and features of brain cells, including rudimentary cognitive function.

Video: SpaceX's CRS-21 Mission to the Space Station: What's On Board


Related Links
Space Station Research
Space Tourism, Space Transport and Space Exploration News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE TRAVEL
NSF and CASIS Announce 4th Annual Solicitation in Tissue Engineering and Mechanobiology to utilize ISS
Kennedy Space Center FL (SPX) Nov 18, 2020
The Center for the Advancement of Science in Space (CASIS) and the National Science Foundation (NSF) announced their fourth annual joint solicitation for investigators to leverage the International Space Station (ISS) for research in the fields of tissue engineering and mechanobiology. Up to $1.6 million will be awarded for multiple research investigations to support flight projects under the sponsorship of the ISS U.S. National Laboratory. An additional $450,000 may be available to support hardwa ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
Catalyzing a zero-carbon world by harvesting energy from living cells

Microbe "rewiring" technique promises a boom in biomanufacturing

Tough, strong and heat-endure: Bioinspired material to oust plastics

Luminescent wood could light up homes of the future

SPACE TRAVEL
Machine learning guarantees robots' performance in unknown territory

Robot dogs to enhance security at Tyndall AFB, Fla.

On the way to lifelike robots

Robotic AI learns to be spontaneous

SPACE TRAVEL
NREL advanced manufacturing research moves wind turbine blades toward recyclability

Policy, not tech, spurred Danish dominance in wind energy

California offshore winds show promise as power source

SPACE TRAVEL
Utilizing a 'krafty' waste product: Toward enhancing vehicle fuel economy

Upgraded radar can enable self-driving cars to see clearly no matter the weather

UK to ban petrol, diesel cars from 2030 in green 'revolution'

DoorDash IPO filing shows growth surge in pandemic

SPACE TRAVEL
Chinese car battery maker eyes 2-bn-euro base in Germany

Finland's battery plans spark environmental fears

Turning heat into power with efficient organic thermoelectric material

Time for a new state of matter in high-temperature superconductors

SPACE TRAVEL
Commercializing next-generation nuclear energy technology

Framatome joins Sizewell C Consortium to deliver low-carbon energy to the UK

Study identifies reasons for soaring nuclear plant cost overruns in the US

Framatome's Le Creusot plant ramps up production of replacement components for French power stations

SPACE TRAVEL
Powering through the coming energy transition

Urban greenery plays a surprising role in greenhouse gas emissions

Barclays finances more fossil fuel firms despite green vow: NGOs

Barclays finances more fossil fuel firms despite green vow: NGOs

SPACE TRAVEL
Los Angeles and Google partner on 'Tree Canopy' project

Bolsonaro vows to name and shame illegal wood importers

What type of forest to choose for better CO2 storage?

Satellite images provide up-to-date information on forest resources









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.