Solar Energy News  
TIME AND SPACE
New results challenge leading theory in physics
by Staff Writers
Zurich, Switzerland (SPX) Mar 24, 2021

stock image only

When so-called beauty quarks are produced during the collision of high-energy proton beams in the Large Hadron Collider - the particle accelerator at CERN in Geneva - they decay almost immediately on the spot. Researchers of the Large Hadron Collider beauty experiment (LHCb) reconstruct the properties of the composite particles based on their decay products.

According to the established laws of particle physics - the so-called Standard Model - it is expected that beauty quarks decay with the same probability into a final state with electrons and muons, the much heavier siblings of electrons.

However, since 2014 measurements at the LHC suggest that this "lepton universality" may be violated in some decays. In these decays, the production ratio of the two types of particles is different from the theoretical prediction of one.

Members of the group led by Nicola Serra, professor at the Department of Physics at the University of Zurich (UZH), are part of the small research team that worked directly on the measurement.

In the newest LHCb analysis, the ratio of decay products containing electrons and muons was determined with much better precision compared to previous measurements, using all the data collected by the LHCb detector so far.

The result indicates evidence for a deviation from the ratio of one - and hence a breaking of the "lepton universality" in beauty quark decays with a probability of around 0,1% that the data is compatible with the theoretical prediction.

If confirmed, this violation would imply physics beyond the Standard Model such as a new fundamental force in addition to the four fundamental ones: gravity, electromagnetism, weak nuclear interactions responsible for radioactivity and strong nuclear forces that hold matter together.

"The Standard Model has reigned supreme for decades. Our job as experimentalists is to test it more and more precisely and see if it can survive the increased scrutiny", says UZH senior researcher Patrick Owen, who played a leading role in the analysis.

In particle physics, observations become true discoveries if the probability of error, taking into account all known errors, is less than one in three million or 0,00003%, which adds caution to researcher's excitement.

"So, it is too early to draw a final conclusion. However, this deviation agrees with a pattern of anomalies which have manifested themselves over the last decade", says Nicola Serra. "Fortunately, the LHCb collaboration is well placed to clarify the potential existence of new physics effects in these decays. We just need many more related measurements in the future", he concludes.

The result was presented this week for the first time at the Moriond conference on electroweak interactions and unified theories, and at an online seminar at CERN, the European Organization for Nuclear Research in Geneva.

The Large Hadron Collider beauty experiment (LHCb)
The LHCb experiment is one of the four large experiments at the Large Hadron Collider (LHC) at CERN in Geneva. It is designed to study decays of particles containing a beauty quark, the quark with the highest mass forming bound states. The resulting precision measurements of matter-antimatter differences and rare decays of particles containing a beauty quark allow sensitive tests of the Standard Model of particle physics.

Research groups from the UZH and the EPFL are members of the LHCb collaboration since 1999. They have made important contributions to the design and construction of the LHCb detector and are involved in its upgrades.

These will be key to collect the needed statistics to find out whether the anomalies observed in beauty quark decays are indeed real. Since the start of data taking in 2009 the UZH group of Nicola Serra has played a leading role in measurements of decays of particles containing beauty quarks.


Related Links
University Of Zurich
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Artificial "molecules" open door to ultrafast polaritonic devices
Moscow, Russia (SPX) Mar 02, 2021
Researchers from Skoltech and the University of Cambridge have shown that polaritons, the quirky particles that may end up running the quantum supercomputers of the future, can form structures behaving like molecules - and these "artificial molecules" can potentially be engineered on demand. The paper outlining these results was published in the journal Physical Review B Letters. Polaritons are quantum particles that consist of a photon and an exciton, another quasiparticle, marrying light and mat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Genome scalpel invented for industrial microalgae to efficiently turn CO2 into biofuel

Double-duty catalyst generates hydrogen fuel while cleaning up wastewater

Aviation leaders launch sustainable-fuel emissions study on a commercial passenger jet

Huge potential for electronic textiles made with new cellulose thread

TIME AND SPACE
Robots learn faster with quantum technology

DyRET robot can rearrange its body to walk in new environments

Motion picture cameras to help androids make realistic facial expressions

Advancement creates nanosized, foldable robots

TIME AND SPACE
TechnipFMC enters partnership with Magnora to develop floating offshore wind projects

Field study shows icing can cost wind turbines up to 80% of power production

BP enters UK offshore wind sector

Denmark moves forward on North Sea 'energy island'

TIME AND SPACE
'Das Auto' goes electric as VW takes on Tesla

Musk tells China data gathered by Teslas remain secret: report

Commercial truck electrification is within reach

UK city where Romans bathed penalises polluting cars

TIME AND SPACE
Understanding imperfections in fusion magnets

New approach to thermal protection in outdoor wearable electronics

Material from Russia will triple the capacity of lithium-ion batteries

Wartsila's flexible floating energy storage system bolsters Philippine power grid

TIME AND SPACE
Detecting nuclear power pollution separate from global fall out

Nuclear power is important for a decarbonized, resilient energy system

Putin, Erdogan launch new phase of Turkish nuclear power plant

UAE to host IAEA's most complex nuclear crisis drill

TIME AND SPACE
UK CO2 emissions halved since 1990: study

Germany hits climate target thanks to pandemic

When green energy is the 'default' choice consumers stay loyal to renewables

UK banks face climate conflicts of interest: study

TIME AND SPACE
Maps to improve forest biomass estimates

Million-tree mission hopes to fix reforestation flaws

One dead, several missing in Argentina forest fires

Desert country Jordan aims for green with 10-million tree campaign









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.