Solar Energy News  
SOLAR DAILY
New study on a recently discovered chlorophyll molecule could be key to better solar cells
by Staff Writers
Tokyo, Japan (SPX) Jan 23, 2020

Scientists uncover the location and functions of a new type of chlorophyll molecule for the first time

All living organisms need energy for their survival, and this energy indirectly comes from the sun. Some organisms, such as plants, cyanobacteria, and algae, are capable of directly converting this light energy into chemical energy via a process called "photosynthesis". These photosynthetic organisms contain special structures to mediate photosynthesis, called "photosystems".

There are two photosystems that carry out light-energy conversion reactions, each of which is composed of a number of proteins and pigments. Among photosynthetic pigments, chlorophyll is the most crucial one, which not only captures light energy from the sun but also participates in the "electron transfer chain", a molecular pathway through which photons (from the sunlight) are converted into electrons (which are used as an energy source).

There are different types of chlorophyll molecules, each having a specific function ranging from absorbing light and converting it into energy. Moreover, each chlorophyll molecule absorbs light in different regions. Recently, a new type of chlorophyll called Chl f was discovered, but details like exactly where it is located and how it functions have remained a mystery until now.

In a new study published in Nature Communications, a team of researchers led by Prof. Tatsuya Tomo at the Tokyo University of Science, Japan, and including collaborating researchers from Okayama University, Tsukuba University, Kobe University, and RIKEN, revealed new details about the location and functions of Chl f. They wanted to gain insight into the complex process of photosynthesis, as an in-depth understanding of this process could have various future applications, such as the development of solar cells.

Talking about the study, Prof. Tomo says, "The initial course of photosynthesis begins when the photosynthetic pigment bound to this photochemical complex absorbs light. We analyzed the structure of a newly discovered photochemical complex, photosystem I with Chl f that has an absorption maximum on the lower energy side of light (far-red light). Moreover, we analyzed the function of Chl f."

What the scientists knew so far was that Chl f is "far-red shifted," which means that this molecule absorbs far-red light from the lower end of the light spectrum. Prof. Tomo and his team wanted to dig deeper, and for this, they studied the alga in which Chl f was first discovered.

By using techniques such as cryo-electron microscopy, they analyzed the high-resolution structure of the photosystem in this alga in detail and found that Chl f is located at the periphery of photosystem I (one of the two types of photosystems) but is not present in the electron transfer chain. They also found that far-red light causes structural changes in the photosystem, which are accompanied by the synthesis of Chl f in the algae, leading them to conclude that Chl f causes these structural changes in photosystem I.

This was exciting, as this finding is the first to explain how exactly Chl f works. Prof Tomo says, "Our findings revealed that the appearance of Chl f is well correlated with the expression of photosystem I genes induced under far-red light. This indicates that Chl f functions to harvest the far-red light and enhance up-hill energy transfer. We also found that the amino acid sequence of photosystem I was altered so as to accommodate the structure of Chl f."

Understanding the intricacies of photosynthesis has several important applications. For example, mimicking the process of photosynthesis in an artificial system is an elegant method of capturing solar energy and converting it into electricity.

Prof Tomo elaborates, "About half of the solar energy that falls on the earth is visible light, and the other half is infrared light. Our research puts forth a mechanism that can use light on the lower energy spectrum, which has never been seen before. Our findings show how to improve the efficiency of energy transfer in photosynthesis and, by extension, also provide important insights into artificial photosynthesis."

Research Report: "Structural basis for the adaptation and function of chlorophyll f in photosystem I"


Related Links
Tokyo University of Science
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
New molecule harnesses full visible spectrum of sunlight
Washington DC (UPI) Jan 21, 2020
Scientists have discovered a molecule that can take advantage of the entire visible spectrum of sunlight. The molecule can both efficiently absorb sunlight and operate as a catalyst, triggering the conversion of solar energy into hydrogen, which can be used as fuel. In a new paper, published this week in the journal Nature Chemistry, scientists suggest the novel molecule can be used to build more efficient solar cells and accelerate the transition to alternative, climate-friendly fuels like hyd ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Microwaving sewage waste may make it safe to use as fertilizer on crops

How to make it easier to turn plant waste into biofuels

EU project RES URBIS shows the viability of bioplastic generation with urban biowaste

From a by-product of the biodiesel industry to a valuable chemical

SOLAR DAILY
Anatomy of a Rover: The Mechanics of a Winning Student Vehicle Design

Team builds the first living robots

Can sea star movement inspire better robots?

Raytheon tapped for self-evaluating machine learning system

SOLAR DAILY
UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

Consider marine life when implementing offshore renewable power

Supporting structures of wind turbines contribute to wind farm blockage effect

SOLAR DAILY
Dutch foundation launches 'Dieselgate' action against VW in France

No pedals, no steering wheel: Cruise unveils autonomous shuttle

EU auto market set for first drop in seven years: carmakers

Payout for Musk as Tesla value tops $100 bn

SOLAR DAILY
Some batteries can be pushed too far

A breath of fresh air for longer-running batteries

A new method to study lithium dendrites could lead to better, safer batteries

Utilizing relativistic effects for laser fusion

SOLAR DAILY
GE Hitachi and TerraPower collaborate for versatile test reactor program

Japan court halts nuclear reactor restart citing volcano, quake risks

Austria fails to win over neighbours for nuclear phase-out

Iran says 'daily enrichment' of uranium higher than 2015

SOLAR DAILY
Climate crisis spawns high tide of greenwashing

Thunberg, Trump to offer competing visions at climate-focused Davos

Global resource consumption tops 100 bn tonnes for first time

France, Germany join BlackRock for climate investment

SOLAR DAILY
Taking root? Tree-planting new trend in eco-conscious Davos

Amazon indigenous leaders accuse Brazil of 'genocide' policy

Amazon tribes meet to counter Bolsonaro environmental threats

Deforestation in Brazil's Amazon up 85 percent in 2019









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.