![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Ulsan, South Korea (SPX) Mar 10, 2020
As solar cells become more transparent, you may now add transparent panels of solar cells on windows of buildings and electronic devices to generate electricity. Furthermore, in adding flexibility to this, its product range will be even expanded to assure the future mobile applications for wearable devices. A research team, led by Professor Kyoung Jin Choi in the School of Materials Science and Engineering at UNIST has introduced a flexible and transparent solar cell, using silicon microwire composites. The new solar cell takes a structure in which cylindrical silicon rods are embedded in a flexible and transparent polymer material. As the visible lights passes between polymer materials without silicon rods, it appears entirely transparent to the human eye. It is also designed to control the sunlight reflected from the silicon rods, thereby increasing efficiency. When sunlight reaches Earth, the energy is absorbed, transmitted, or reflected. In the case of solar cells, they generate electricity when light is absorbed in their photoactive layers. Whereas, an object that appears to be transparent are when the visible light of solar radiation passes through it. Therefore, making silicon-based solar cells transparent will reduce the amount of solar radiation absorbed, which may actually result in decreasing their efficiency. To overcome such limitation, Professor Choi's team used transparent and flexible polymer substrates and specially shaped silicon rods. In this solar cell, a silicon rod acts as a photoactive layer, absorbing sunlight and producing electricity. These silicone rods are arranged at intervals which are transparent and invisible to the naked eye. As a result, the new solar cell maintains the transparent and flexible properties of the substrate itself. In the study, the research team has changed the shape of the SiMW tip dramatically for increased light absorption, while maintaining transparency. With the conventional solar cells, reflection occurs, as well as the absorption and transmission of light. Most of them are unable to take advantage of the reflected light, but the researchers created a structure to absorb it back into the solar cell. Based on the analysis of the light absorption mechanism in the silicon rods, the team designed the light reflected from the top of the bar to be absorbed by the bar next to it. "This is a new attempt to apply the results of analyzing the theoretical light absorption mechanism to the development of high performance transparent solar cells," says Sung Bum Kang (Combined MS/Phd program in the School of Materials Science and Engineering, UNIST), the first author of the study. "Thus, this recycling structure that reuses has increased the efficiency of the entire solar cell." "Existing transparent solar cells were manufactured on rigid glass substrates, so their application range was limited," says Professor Choi. "The new solar cell is expected to maintain its initial efficiency of more than 95% even after dozens of bending tests, and be applied to a variety of buildings, vehicle glass, and portable electronic devices."
Research Report: "Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility"
![]() ![]() New type of indoor solar cells for smart connected devices Uppsala, Sweden (SPX) Mar 05, 2020 In a future where most things in our everyday life are connected through the internet, devices and sensors will need to run without wires or batteries. In a new article in Chemical Science, researchers from Uppsala University present a new type of dye-sensitised solar cells that harvest light from indoor lamps. The Internet of Things, or IoT, refers to a network of physical devices and applications connected through the internet. It is estimated that by 2025, many facets of our lives will be media ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |