Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
New study reveals challenge facing designers of future computer chips
by Staff Writers
Montreal, Canada (SPX) Nov 13, 2012


Illustration only.

To build the computer chips of the future, designers will need to understand how an electrical charge behaves when it is confined to metal wires only a few atom-widths in diameter. Now, a team of physicists at McGill University, in collaboration with researchers at General Motors R and D, have shown that electrical current may be drastically reduced when wires from two dissimilar metals meet.

The surprisingly sharp reduction in current reveals a significant challenge that could shape material choices and device design in the emerging field of nanoelectronics.

The size of features in electronic circuits is shrinking every year, thanks to the aggressive miniaturization prescribed by Moore's Law, which postulated that the density of transistors on integrated circuits would double every 18 months or so.

This steady progress makes it possible to carry around computers in our pockets, but poses serious challenges. As feature sizes dwindle to the level of atoms, the resistance to current no longer increases at a consistent rate as devices shrink; instead the resistance "jumps around," displaying the counterintuitive effects of quantum mechanics, says McGill Physics professor Peter Grutter.

"You could use the analogy of a water hose," Grutter explains. "If you keep the water pressure constant, less water comes out as you reduce the diameter of the hose. But if you were to shrink the hose to the size of a straw just two or three atoms in diameter, the outflow would no longer decline at a rate proportional to the hose cross-sectional area; it would vary in a quantized ('jumpy') way."

This "quantum weirdness" is exactly what the McGill and General Motors researchers observed, as described in a new paper appearing in Proceedings of the National Academy of Sciences. The researchers investigated an ultra-small contact between gold and tungsten, two metals currently used in combination in computer chips to connect different functional components of a device.

On the experimental side of the research, Prof. Grutter's lab used advanced microscopy techniques to image a tungsten probe and gold surface with atomic precision, and to bring them together mechanically in a precisely-controlled manner.

The electrical current through the resulting contact was much lower than expected. Mechanical modeling of the atomic structure of this contact was done in collaboration with Yue Qi, a research scientist with the General Motors R and D Center in Warren, MI.

State-of-the-art electrical modeling by Jesse Maassen in professor Hong Guo's McGill Physics research group confirmed this result, showing that dissimilarities in electronic structure between the two metals leads to a fourfold decrease in current flow, even for a perfect interface.

The researchers additionally found that crystal defects - displacements of the normally perfect arrangement of atoms - generated by bringing the two materials into mechanical contact was a further reason for the observed reduction of the current.

"The size of that drop is far greater than most experts would expect - on the order of 10 times greater," notes Prof. Grutter.

The results point to a need for future research into ways to surmount this challenge, possibly through choice of materials or other processing techniques. "The first step toward finding a solution is being aware of the problem," Grutter notes. "This is the first time that it has been demonstrated that this is a major problem" for nanoelectronic systems."

.


Related Links
McGill University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
No Japan electronics bailout, minister hints
Tokyo (AFP) Nov 9, 2012
A senior Japanese politician hinted Friday that a government bailout was not on the cards for the nation's struggling electronics giants, after embattled Sharp cast doubt on its own survival. Economy minister Seiji Maehara said the likes of Panasonic and Sharp, on track to book combined annual losses of more than $15.0 billion, should not expect the kind of taxpayer-funded rescue handed to o ... read more


CHIP TECH
A Better Route to Xylan

More Bang for the Biofuel Buck

Sweet diesel! Discovery resurrects process to convert sugar directly to diesel

First solely-biofuel jet flight raises clean travel hopes

CHIP TECH
Britain says no calculators for math tests

Off to the Future with a new Soccer Robot

Flying rescue robot can avoid obstacles

Advanced exoskeleton promises more independence for people with paraplegia

CHIP TECH
Scotland approves 85MW Highlands wind farm

China backs suit against Obama over wind farm deal

DNV KEMA awarded framework agreement for German wind project developer SoWiTec

Sandia Labs benchmark helps wind industry measure success

CHIP TECH
Expert's report on economic and environmental advantages of High Capacity Vehicles

Japan car sales in China fall 59.4% in October: group

Green cars ready to race in 2nd Atacama solar challenge

China auto firms in 'strategic alliance' to compete

CHIP TECH
Prestige skipper blames Spain at oil disaster trial

Warning issued on 'experimental' fracking

Using rust and water to store solar energy as hydrogen

New Jersey ends gasoline rationing

CHIP TECH
French EDF, Areva mull nuclear plan with China's CGNPC

S. Korea reactor shut down due to cracks

Fault under Japan nuclear plant 'may be active'

S. Korea watchdog finds cracks in nuclear reactor

CHIP TECH
New Rule Could Reenergize Clean-Energy In New Jersey

Enviro Champions Win on Clean Energy, Protecting Environment and Public Health

Australia pledges to second phase of Kyoto

California readies for carbon plan

CHIP TECH
Mountain meadows dwindling in the Pacific Northwest

New three-fingered frog discovered in southern Brazil

Action needed to prevent more devastating tree diseases entering the UK

Inspiration from Mother Nature leads to improved wood




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement