Solar Energy News  
NANO TECH
New system designs nanomaterials that conduct heat in specific ways
by Adam Zewe for MIT News
Boston MA (SPX) Oct 10, 2022

This image shows a nanomaterial that has been digitized so its structure can be optimized using the researchers' computational technique, which designs nanomaterials that conduct heat in specific ways.

Computer chips are packed with billions of microscopic transistors that enable powerful computation, but also generate a great deal of heat. A buildup of heat can slow a computer processor and make it less efficient and reliable. Engineers employ heat sinks to keep chips cool, sometimes along with fans or liquid cooling systems; however, these methods often require a lot of energy to operate.

Researchers at MIT have taken a different approach. They developed an algorithm and software system that can automatically design a nanoscale material that can conduct heat in a specific manner, such as channeling heat in only one direction.

Because these materials are measured in nanometers (a human hair is about 80,000 nanometers wide) they could be used in computer chips that can dissipate heat on their own due to the material's geometry.

The researchers developed their system by taking computational techniques that have been traditionally used to develop large structures, and adapting them to create nanoscale materials with defined thermal properties.

They designed a material that can conduct heat along a preferred direction (an effect known as thermal anisotropy) and a material that can efficiently convert heat into electricity. They are using the latter design to fabricate a nanostructured silicon device for waste heat recovery at MIT.nano.

Scientists typically use a combination of guesswork and trial-and-error to optimize a nanomaterial's ability to conduct heat. Instead, someone could input the desired thermal properties into their software system and receive a design that can achieve those properties, and that can realistically be fabricated.

In addition to creating computer chips that can dissipate heat, the technique could be used to develop materials that can efficiently convert heat into electricity, known as thermoelectric materials.

These materials could capture waste heat from a rocket's engines, for instance, and use it to help power the spacecraft, explains lead author Giuseppe Romano, a research scientist at MIT's Institute for Soldier Nanotechnology and a member of the MIT-IBM Watson AI Lab.

"The goal here to design these nanostructured materials that transport heat very differently than any natural materials," says senior author Steven Johnson, professor of applied mathematics and physics who heads the Nanostructures and Computation Group within the MIT Research Laboratory for Electronics.

"But the question is, how do you do this as efficiently as possible, rather than just trying a bunch of different things based on intuition? Giuseppe applied computational design to let the computer explore over many possible shapes and come up the one that has the best possible thermal properties."

Their research paper is published in Structural and Multidisciplinary Optimization.

Controlling vibrations
Heat in semiconductors travels through vibrations. Molecules vibrate faster as they heat up, causing nearby groups of molecules to start vibrating, and so on, moving heat through a material like a crowd of fans doing "the wave" at a baseball game. At the atomic scale, these waves of vibrations are captured into discrete packets of energy, known as phonons.

The researchers want to create nanoscale materials that control heat transfer in very specific ways, such as a material that conducts more heat in a horizontal direction and less heat in a vertical direction. To do this, they need to control how phonons move through the material.

The materials they focused on are known as periodic nanostructures, which are made by a lattice of structures with an arbitrary shape. Changing the sizes or the arrangement of these structures may dramatically alter the thermal properties of the entire system.

In principle, the researchers could have made some parts of these structures too narrow for phonons to pass through, controlling how heat can travel through the material. But there are virtually infinite configurations, so figuring out how to arrange them for some specific thermal properties using only intuition would have been extremely difficult.

"Instead, we borrowed a computational technique that was traditionally developed for structures like bridges. Imagine that we transform a material into a picture, and then we find the best pixel distribution that gives us the prescribed property," says Romano.

Using this computational technique, an algorithm needs to figure out whether or not to place a hole at each pixel in the image.

"Because there are millions of pixels, if you just try each one, there are just too many possibilities to simulate. The way you have to optimize this is to start with some guess and then evolve it in a way of continuously deforming the structure to make it better and better," Johnson explains.

But this kind of optimization is very difficult to achieve with nanomaterials.

For one, the physics of thermal transport behaves differently at the nanoscale, so the usual equations don't work. Plus, modeling the movement of phonons is especially complex. One must know where they are in three-dimensional space as well as how fast they are moving and in what direction.

Taming complex equations
The researchers devised a new technique, known as the transmission interpolation method, that enables these very complex equations to behave in a way that the algorithm can handle. With this method, the computer can smoothly and continuously deform the material distribution until it achieves the desired thermal properties, rather than trying each pixel one at a time.

The team also created an open-source software system and a web app that enables a user to input desired thermal properties and receive a manufacturable nanoscale material structure. By making the system open source, the researchers hope to inspire other scientists to contribute to this area of research.

With this new tool in hand, the researchers are exploring other materials that can be optimized using this system, such as metal alloys, which could open the door to new applications. They are also studying methods to optimize thermal conductivity in three dimensions, rather than only horizontally and vertically.

"As far as I know, the paper by Romano and Johnson is among the first ones in performing topological optimal material design for nanoscale heat transfer with the phonon Boltzmann transport model. The technical novelty of their method is mainly in a clever integration of a transmission interpolation method with the Boltzmann transport model so that the gradient of the design objective function with respect to the structure of the material can be calculated," says Kui Ren, a professor of applied mathematics at Columbia University, who was not involved with this work.

"The idea is quite novel and general, and I can imagine that this idea will soon be adopted for topological design objectives with more complicated heat transport models, and in many other regimes of heat transfer applications."

This research was partially supported by the MIT-IBM Watson AI Laboratory.

Research Report:"Inverse Design in Nanoscale Heat Transport via Interpolating Interfacial Phonon Transmission"


Related Links
Nanostructures and Computation Group
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Physicists generate new nanoscale spin waves
Halle, Germany (SPX) Sep 28, 2022
Strong alternating magnetic fields can be used to generate a new type of spin wave that was previously just theoretically predicted. This was achieved for the first time by a team of physicists from (MLU). They report on their work in the scientific journal Nature Communications and provide the first microscopic images of these spin waves. The basic idea of spintronics is to use a special property of electrons - spin - for various electronic applications such as data and information technology. Th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Engineering duckweed to produce oil for biofuels, bioproducts

On-site reactors could affordably turn CO2 into valuable chemicals

Onshore algae farms could be 'breadbasket for Global South'

Processing waste biomass to reduce airborne emissions

NANO TECH
No Terminator: Musk teases 'useful' humanoid robot

Soft robots that grip with the right amount of force

Smart microrobots walk autonomously with electronic 'brains'

The Perseverance robotic arm tightrope of abrasion proximity science

NANO TECH
Wind turbine maker Siemens Gamesa plans 2,900 jobs cuts

Spain, UK making headway on renewable energy: report

Europe and China operate the largest number of offshore wind farms

A new method boosts wind farms' energy output, without new equipment

NANO TECH
Chinese EV maker Nio takes on German auto titans

ZEDU-1 - The world's most environment friendly vehicle in operation

After California, New York moves to ban new gas vehicles by 2035

EVs at Detroit Auto Show? Consumers have questions

NANO TECH
Battery tech breakthrough paves way for mass adoption of affordable electric car

A catalyst alloying platinum with a rare earth element could slash fuel cell costs

Nuclear fusion: A new solution for the instability problem

The battery that runs 630 km on a single charge

NANO TECH
Finland hopes new nuclear reactor eases energy crunch

Ukraine nuclear site, Europe's biggest, reconnected to grid

Thunberg says 'mistake' for Germany to use coal over nuclear

Shelling cuts power to Ukraine nuclear site, Europe's biggest

NANO TECH
UN urges 'complete transformation' of global energy system

Rwanda agrees with IMF on aid under new climate change fund

Step up investment to meet 2050 net-zero: Swiss Re

Space to boost secure sustainable energy supplies

NANO TECH
Amazon deforestation breaks Sept record; Scientists reach tallest tree found in Amazon

Egypt replants mangrove 'treasure' to fight climate change impacts

Romania cracks down on illegal logging

Mexican mangroves have been capturing carbon for 5,000 years









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.