Solar Energy News  
ENERGY TECH
New tech automatically 'tunes' powered prosthetics while walking
by Staff Writers
Raleigh NC (SPX) Oct 01, 2015


When amputees receive powered prosthetic legs, the power of the prosthetic limbs needs to be tuned by a prosthetics expert so that a patient can move normally -- but the prosthetic often needs repeated re-tuning. Biomedical engineering researchers at North Carolina State University and the University of North Carolina at Chapel Hill have now developed software that allows powered prosthetics to tune themselves automatically, making the devices more functionally useful and lowering the costs associated with powered prosthetic use. The footage on the left shows the user's gait before tuning. The footage on the right shows the user's gait after the prosthesis has been automatically tuned. Image courtesy Helen Huang.

When amputees receive powered prosthetic legs, the power of the prosthetic limbs needs to be tuned by a prosthetics expert so that a patient can move normally - but the prosthetic often needs repeated re-tuning. Biomedical engineering researchers at North Carolina State University and the University of North Carolina at Chapel Hill have now developed software that allows powered prosthetics to tune themselves automatically, making the devices more functionally useful and lowering the costs associated with powered prosthetic use.

"When a patient gets a powered prosthetic, it needs to be customized to account for each individual patient's physical condition, because people are different in size and strength. And that tuning is done by a prosthetist," says Helen Huang, lead author of a paper on the work and an associate professor in the biomedical engineering program at NC State and UNC-Chapel Hill.

"In addition, people are dynamic - a patient's physical condition may change as he or she becomes accustomed to a prosthetic leg, for example, or they may gain weight. These changes mean the prosthetic needs to be re-tuned, and working with a prosthetist takes time and money."

To address this problem, the researchers developed an algorithm that can be incorporated into the software of any powered prosthesis to automatically tune the amount of power a prosthetic limb needs in order for a patient to walk comfortably. The algorithm would not only make it easier for patients to walk while reducing prosthetist-related costs, but would also allow a prosthesis to adjust to changing conditions.

"For example, the algorithm could provide more power to a prosthesis when a patient carries a heavy suitcase through an airport," Huang says.

The system works by taking into account the angle of the prosthetic knee while walking.

Powered prosthetic legs are programmed so that the angle of the prosthetic joints - the knee or ankle - while walking mimics the normal movement of the joints when an able-bodied person is walking. During the conventional prosthetic tuning process, a prosthetist adjusts the powered prosthesis's system so that it exerts the power necessary to recreate those normal joint motions while walking.

But changes in a person's weight, or gait, can affect the prosthesis's ability to achieve that "natural" joint angle.

The automatic-tuning algorithm takes a similar approach, tracking the angle of the prosthetic joint while walking. But it is able to adjust the amount of power the prosthesis receives in real time, in order to maintain the proper angle.

"In testing, we found that the computer - using the algorithm - performed better than prosthetists at achieving the proper joint angle," Huang says. "So we know our approach works. But we're still working to make it better.

"Prosthetists rely on years of experience to not only adjust the joint angle, but to adjust a prosthesis to help patients maintain a comfortable posture while walking," Huang adds. "We're not yet able to replicate the prosthetist's success in achieving those comfortable 'trunk motions,' but it's something we're working on."

The paper, "A Cyber Expert System for Auto-Tuning Powered Prosthesis Impedance Control Parameters," is published in the journal Annals of Biomedical Engineering. The paper was co-authored by Dustin Crouch, Ming Liu, Gregory Sawicki and Ding Wang, of the joint biomedical engineering program at NC State and UNC-Chapel Hill.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
North Carolina State University
. Watch a video on the research here. Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Nano-mechanical study offers new assessment of silicon for next-gen batteries
Atlanta GA (SPX) Sep 25, 2015
A detailed nano-mechanical study of mechanical degradation processes in silicon structures containing varying levels of lithium ions offers good news for researchers attempting to develop reliable next-generation rechargeable batteries using silicon-based electrodes. Anodes - the negative electrodes - based on silicon can theoretically store up to ten times more lithium ions than conventio ... read more


ENERGY TECH
Bravo to biomass

Protein conjugation method offers new possibilities for biomaterials

Discovery of the redox-switch of a key enzyme involved in n-butanol biosynthesis

Building a biofuel-boosting Swiss Army knife

ENERGY TECH
Embedded optical sensors could make robotic hands more dexterous

MIT's egg-clutching robot has soft but steady hands

Aussie woman sends 'robot' to queue for new iPhone

How social cues influence human-robot interaction

ENERGY TECH
Chinese firm invests in Mexican wind power projects

German wind power output topping 2014 total

Offshore wind farms could be more risky for gannets than assessed

U.S. studying offshore wind farm impacts

ENERGY TECH
Oslo moves to ban cars from city centre

VW revs up recall plan, hunts for culprits in pollution scam

China to halve car purchase tax amid flagging sales

VW says probe into pollution scam to take months

ENERGY TECH
U.S. coal sector in downturn

New York City to divest from coal

New tech automatically 'tunes' powered prosthetics while walking

India vows ambitious green targets but defends coal use

ENERGY TECH
UK nuclear plant deal hinges on ambitions of London, Beijing and EDF

'Dustbin' ship takes nuclear waste to Australia from France

Turkey's First Nuclear Plant Likely to Go Operational by 2022

British Treasury guarantee to put Hinkley nuclear plant back on track

ENERGY TECH
Leaders call for carbon pricing worldwide

ADB supports Indonesian energy diversity

US cities ranked on impact of urban heat islands on temps

Brazil's Rousseff pledges 37% cut in greenhouse gas emissions

ENERGY TECH
Tourists replace rebels as Sri Lanka national park blooms

Deep in Estonia's woods, Mother Nature gets a megaphone

New forests cannot take in as much carbon as predicted

Blacklists protect the rainforest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.