Solar Energy News  
ICE WORLD
New technique more accurately reflects ponds on Arctic sea ice
by Staff Writers
Chicago IL (SPX) Apr 10, 2018

(Left): This is an aerial photos of actual melt ponds atop Arctic sea ice. (Right): A mathematical trick to model these ponds easily and accurately in large climate models.

This one simple mathematical trick can accurately predict the shape and melting effects of ponds on Arctic sea ice, according to new research by UChicago scientists.

The study, published April 4 in Physical Review Letters by researchers with UChicago and MIT, should help climate scientists improve models of climate change and perhaps plug a gap between scientific predictions and observations over the past decade, they said.

Every winter, some of the ocean freezes into ice. Much of the Arctic ecosystem - from polar bears to algae - revolves around this sea ice. It also has a significant impact on the global climate; it can reflect heat back out to space so the Earth doesn't absorb it, and it's a major player in ocean circulation.

"But sea ice cover has been shrinking, and significantly faster than our models predict," said Predrag Popovi, a UChicago graduate student and first author of the paper. "So we're looking for where the discrepancy might be."

One possibility is melt ponds. As the sun shines and the ice melts, ponds of water form atop the ice. These ponds absorb extra sunlight, because they're darker than ice, which in turn causes the rest of the ice to melt faster. Their size and shape also influence how ice breaks up, and how much light gets to organisms living below the ice.

Popovi, along with Prof. Mary Silber and Assoc. Prof. Dorian Abbot of the University of Chicago, wondered if there was a better way to statistically model these ponds. Their "void" method starts by creating a series of random circles, allowing them to overlap and considering the voids between the circles as melt ponds.

This turns out to be quite effective at estimating how actual melt ponds form and behave, which they found by comparing them to aerial images of melts taken in 1998 and 2005.

Simpler math is particularly helpful for scientists trying to build global climate models, which are already massively complicated and computationally expensive.

"You can get similar characteristics using other mathematical methods, but the void model is much simpler and just as accurate," Abbot said. "Knowing this simple technique can accurately describe ponds could improve our predictions of how sea ice will respond as the Arctic continues to warm."

"It really sets a target for understanding of sea ice," Silber added.

Research paper


Related Links
University of Chicago
Beyond the Ice Age


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ICE WORLD
Wind, sea ice patterns point to climate change in western Arctic
Toronto, Canada (SPX) Apr 09, 2018
A major shift in western Arctic wind patterns occurred throughout the winter of 2017 and the resulting changes in sea ice movement are possible indicators of a changing climate, says Kent Moore, a professor of physics at the University of Toronto Mississauga. Thanks to data collected by buoys dropped from aircraft onto the Arctic Ocean's sea ice, Moore and colleagues at the University of Washington, where he spent the year as the Fulbright Visiting Chair in Arctic Studies, were able to observe thi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Notre Dame researchers developing renewable energy approach for producing ammonia

NUS engineers pioneer greener and cheaper technique for biofuel production

New insights into how cellulose is built could indicate how to break it

Sewage sludge leads to biofuels breakthrough

ICE WORLD
Visual recognition: Seeing the world through the eyes of rodents

How accurate is your AI

Make way for the mini flying machines

Tokyo Tech's six-legged robots get closer to nature

ICE WORLD
Scotland's largest offshore wind farm close to operational

Construction complete ahead of schedule at Sommette wind farm, France

California considered for offshore wind

China considering energy storage mandate for wind

ICE WORLD
US investigating fatal Tesla crash in California

Tesla says 'Autopilot' was engaged during fatal crash

Research hints at double the driving range for electric vehicles

Waymo and Jaguar team up on self-driving luxury ride

ICE WORLD
Knitting electronics with yarn batteries

Engineers turn plastic insulator into heat conductor

A new way to find better battery materials

Researchers charge ahead to develop better batteries

ICE WORLD
Nuclear safety: AREVA develops an innovative technology for reactor inspection

NRC approval brings Framatome's fuel technology closer to market

Putin launches Turkey nuclear project, vows faster arms delivery

UAE says its first nuclear reactor complete

ICE WORLD
Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

Puerto Rico power grid snaps, nearly 1 million in the dark

Grids from Turkmenistan, Afghanistan and Pakistan could be connected

ICE WORLD
Palm trees are spreading northward - how far will they go?

Soil fungi may help determine the resilience of forests to environmental change

Drought-induced changes in forest composition amplify effects of climate change

Amazon deforestation is close to tipping point









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.