Subscribe free to our newsletters via your
. Solar Energy News .




ENERGY TECH
New thermoelectronic generator
by Staff Writers
Washington DC (SPX) Dec 06, 2013


This is a view into the test generator, looking at the emitter (~ 3 cm diameter). Credit: J.Mannhart/MPG.de.

Through a process known as thermionic conversion, heat energy -- such as light from the sun or heat from burned fossil fuels -- can be converted into electricity with very high efficiency.

Because of its promise, researchers have been trying for more than half a century to develop a practical thermionic generator, with little luck. That luck may soon change, thanks to a new design -- dubbed a thermoelectronic generator -- described in AIP Publishing's Journal of Renewable and Sustainable Energy (JRSE).

Thermionic generators use the temperature difference between a hot and a cold metallic plate to create electricity.

"Electrons are evaporated or kicked out by light from the hot plate, then driven to the cold plate, where they condense," explained experimental solid-state physicist Jochen Mannhart of the Max Planck Institute for Solid State Research in Stuttgart, Germany, the lead author of the JRSE paper.

The resulting charge difference between the two plates yields a voltage that, in turn, drives an electric current, "without moving mechanical parts," he said.

Previous models of thermionic generators have proven ineffectual because of what is known as the "space-charge problem," in which the negative charges of the cloud of electrons leaving the hot plate repel other electrons from leaving it too, effectively killing the current.

Mannhart, along with his former students Stefan Meir and Cyril Stephanos, and colleague Theodore Geballe of Stanford University, circumvented this problem using an electric field to pull the charge cloud away from the hot plate, which allowed electrons to fly to the cold plate.

"Practical thermionic generators have reached efficiencies of about 10 percent. The theoretical predictions for our thermoelectronic generators reach about 40 percent, although this is theory only," noted Mannhart.

"We would be much surprised if there was a commercial application in the marketplace within the next five years, but if companies that are hungry for power recognize the potential of the generators, the development might be faster."

The article, "Highly-Efficient Thermoelectronic Conversion of Solar Energy and Heat into Electric Power" by S. Meir, C. Stephanos, T.H. Geballe, and J. Mannhart appears in the Journal of Renewable and Sustainable Energy.

Authors on this study are affiliated with Augsburg University in Germany; the Max Planck Institute for Solid State Research in Stuttgart, Germany; and Stanford University.

.


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
KAIST developed the biotemplated design of piezoelectric energy harvesting device
Seoul, South Korea (SPX) Dec 06, 2013
A research team led by Professor Keon Jae Lee and Professor Yoon Sung Nam from the Department of Materials Science and Engineering at KAIST has developed the biotemplated design of flexible piezoelectric energy harvesting device, called "nanogenerator." Nature has its own capabilities to spontaneously synthesize and self-assemble universal materials with sophisticated architectures such as ... read more


ENERGY TECH
Ground broken on $6 million Hungarian farm biogas plant

Team reports on US trials of bioenergy grasses

Companies could make the switch to wood power

Turning waste into power with bacteria and loofahs

ENERGY TECH
Literal Android: Google develops robots to replace people in manufacturing, retail

Droids dance, dogs nuzzle, humanoids speak at Madrid robot museum

Spanish scientists are designing a robot for inspecting tunnels

Penguin-inspired propulsion system

ENERGY TECH
Renewable Energy Infrastructure Fund acquires 16 MW wind power asset from O2

Morgan Advanced Materials Delivers Superior Insulation Solution To Wind Farm

Ethiopia spearheads green energy in sub-Saharan Africa

Small-Wind Power Market to Reach $3 Billion by 2020

ENERGY TECH
China auto sales hit record high in November

Britain pledges commitment to driverless car technology

China approves $1.3 bn Renault-Dongfeng joint venture

Sweden joins race for self-driving cars

ENERGY TECH
Pentagon chief affirms Qatar, US defence ties

Stationary Fuel Cell Market to Undergo Outstanding Growth by 2020

Pioneering path to electrical conductivity in 'tinker toy' materials to appear in Science

Isolux Corsan To Build 172 km of High Voltage Lines In Kuwait

ENERGY TECH
US takes last shipment of Russian uranium

Company says no danger after fire at US nuclear plant

S. Korea scales back nuclear expansion plans

Decommissioning of nuclear installations: world first for the robot CHARLI

ENERGY TECH
Who Is Keeping the Lights on in California?

The heat is on...or off

French Alstom sues Chinese firm in Bulgaria over patent

India needs $2.1 trillion investment for energy: IEA

ENERGY TECH
More logging, deforestation may better serve climate in some areas

Humans threaten wetlands' ability to keep pace with sea-level rise

Development near Oregon, Washington public forests

Researchers identify genetic fingerprints of endangered conifers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement