Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
New twist on ancient math problem could improve medicine, microelectronics
by Sharon Glotzer
Ann Arbor MI (SPX) May 18, 2012


illustration only

A hidden facet of a math problem that goes back to Sanskrit scrolls has just been exposed by nanotechnology researchers at the University of Michigan and the University of Connecticut. It turns out we've been missing a version of the famous "packing problem," and its new guise could have implications for cancer treatment, secure wireless networks, microelectronics and demolitions, the researchers say.

Called the "filling problem," it seeks the best way to cover the inside of an object with a particular shape, such as filling a triangle with discs of varying sizes. Unlike the traditional packing problem, the discs can overlap. It also differs from the "covering problem" because the discs can't extend beyond the triangle's boundaries.

"Besides introducing the problem, we also provided a solution in two dimensions," said Sharon Glotzer, U-M professor of chemical engineering.

That solution makes it immediately applicable to treating tumors using fewer shots with radiation beams or speeding up the manufacturing of silicon chips for microprocessors.

The key to solutions in any dimension is to find a shape's "skeleton," said Carolyn Phillips, a postdoctoral fellow at Argonne National Laboratory who recently completed her Ph.D. in Glotzer's group and solved the problem as part of her dissertation.

"Every shape you want to fill has a backbone that goes through the center of the shape, like a spine," she said.

For a pentagon, the skeleton looks like a stick-drawing of a starfish. The discs that fill the pentagon best will always have their centers on one of those lines.

Junctions between lines in the skeleton are special points that Glotzer's team refers to as "traps." The pentagon only has one trap, right at its center, but more complicated shapes can contain multiple traps. In most optimal solutions, each trap has a disc centered over it, Phillips said.

Other discs in the pattern change size and move around, depending on how many discs are allowed, but those over the traps are always the same. Phillips suspects that if a design uses enough discs, every trap will have a disc centered over it.

In their paper, published online in Physical Review Letters, the researchers report the rules for how to find the ideal size and spacing of the discs that fill a shape. In the future, they expect to reveal an algorithm that can take the desired shape and the number of discs, or the shape and percentage of the area to be filled, and spit out the best pattern to fill it.

Extending the approach into three dimensions, Glotzer proposes that it could decide the placement of wireless routers in a building where the signal must not be available to a potential hacker in the parking lot. Alternatively, it could help demolition workers to set off precision explosions, ensuring that the blast covers the desired region but doesn't extend beyond a building's outer walls.

Phillips expects filling solutions to be scientifically useful as well. Glotzer's team developed the new problem by trying to find a way to represent many-sided shapes for their computer models of nanoparticles. In addition to nanotechnology, biology and medicine often need models for complex shapes, such as those of proteins.

"You don't want to model every single one of the thousands of atoms that make up this protein," Phillips said. "You want a minimal model that gives the shape, allowing the proteins to interact in a lock-and-key way, as they do in nature."

The filling approach may prove a perfect fit for a variety of fields.

The paper is titled "Optimal filling of shapes." Funding for this study included grants from the Department of Energy and the Department of Defense.

.


Related Links
University of Michigan
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Freshwater crayfish found to have substance covering teeth astonishingly similar to human enamel
Beer-Sheva, Israel (SPX) May 18, 2012
A team of Israeli and German scientists from Ben-Gurion University of the Negev (BGU) and the Max Planck Institute of Colloids and Interfaces have found an enamel-like layer in the mandibles of freshwater crayfish, according to an article in Nature Communications titled "Enamel-like Apatite Crown Covering Amorphous Mineral in a Crayfish Mandible." Dr. Shmuel Bentov from BGU's Avram and Ste ... read more


TECH SPACE
Maps of Miscanthus genome offer insight into grass evolution

Relative reference: Foxtail millet offers clues for assembling the switchgrass genome

Lawrence Livermore work may improve the efficiency of the biofuel production cycle

Discovery of plant proteins may boost agricultural yields and biofuel production

TECH SPACE
Paralysed woman's thoughts control a DLR robot

People with paralysis control robotic arms to reach and grasp using brain computer interface

Japan firm unveils gesture controlling device

NASA Robot Competition Rolls Onto WPI Campus June 14-17

TECH SPACE
US DoI Approves Ocotillo Express Wind Project

Opening Day Draws Close for Janneby Wind Testing Site

NASA Satellite Measurements Imply Texas Wind Farm Impact on Surface Temperature

Scientists find night-warming effect over large wind farms in Texas

TECH SPACE
Tilting Cars On The Assembly Line: A New Angle On Protecting Autoworkers

Nissan posts record sales, $4.28 bn net profit

Electric-powered van to make trans-Africa trip

Toyota full-year profits dive, pledges recovery

TECH SPACE
East Med. gas: Turks warn Israel over jet

Former U.S. diplomats: Reduce foreign oil

Beijing keeps busy with maritime disputes

Philippines stops protest trip to disputed shoal

TECH SPACE
S. Korea nuclear contractor jailed for parts scam

Firms fear summer meltdown in nuclear-free Japan

Japan's TEPCO posts $9.76 bn full-year net loss

New Romanian PM keen to expand nuclear plant

TECH SPACE
Japan urges lower energy use amid shortage fears

A practical guide to green products and services

The quick and easy way to measure power consumption

China posed for carbon emissions scheme

TECH SPACE
Brazil's threatened Awa tribe outnumbered, group says

Model Forecasts Long-Term Impacts of Forest Land-Use Decisions

Time, place and how wood is used are factors in carbon emissions from deforestation

Model Forecasts Long-Term Impacts of Forest Land-Use Decisions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement