Solar Energy News  
SOLAR DAILY
New type of indoor solar cells for smart connected devices
by Staff Writers
Uppsala, Sweden (SPX) Mar 05, 2020

illustration only

In a future where most things in our everyday life are connected through the internet, devices and sensors will need to run without wires or batteries. In a new article in Chemical Science, researchers from Uppsala University present a new type of dye-sensitised solar cells that harvest light from indoor lamps.

The Internet of Things, or IoT, refers to a network of physical devices and applications connected through the internet. It is estimated that by 2025, many facets of our lives will be mediated through 75 billion IoT devices, a majority of which will be located indoors.

Broad installation of such IoT devices requires the devices to become autonomous, meaning that they should no longer need batteries or a grid connection to operate. To achieve this, it is crucial to identify a local low-maintenance energy source that can provide local power to IoT devices, especially in ambient conditions.

Towards this goal, a research team led by Marina Freitag, assistant professor at the Department of Chemistry, Uppsala University, has developed new indoor photovoltaic cells that can convert up to 34 per cent of visible light into electricity to power a wide range of IoT sensors.

The team has designed novel dye-sensitised photovoltaic cells based on a copper-complex electrolyte, which makes them ideal for harvesting indoor light from fluorescent lamps and LEDs. The latest promising results establish dye-sensitised solar cells as leaders in power conversion efficiency for ambient lighting conditions, outperforming conventional silicon and solar cells made from exotic materials.

The research promises to revolutionise indoor digital sensing for smart greenhouses, offices, shelves, packages and many other smart everyday objects for the Internet of Things.

"Knowing the spectra of these light sources makes it possible to tune special dyes to absorb indoor light. While generating large amounts of energy, these indoor photovoltaics also maintain a high voltage under low light, which is important to power IoT devices," says Freitag.

In cooperation with the Technical University of Munich, the researchers have further designed an adaptive 'power management' system for solar-powered IoT sensors. In contrast to their battery-limited counterparts, the light-driven devices intelligently feed from the amount of light available.

Computational workloads are executed according to the level of illumination, minimising energy losses during storage and thus using all light energy to the maximum of its availability. Combining artificial intelligence and automated learning, the solar cell system can thus reduce energy consumption, battery waste and help to improve general living conditions.

In the future, scientists expect that billions of IoT devices self-powered by indoor solar cells will provide everything from environmental information to human-machine and machine-machine communications. Such advanced sensors can further enhance the next wave of robotics and autonomous systems currently in development.

"Ambient light harvesters provide a new generation of self-powered and smart IoT devices powered by an energy source that is largely untapped. The combination of high efficiency and low cost with non-toxic materials for indoor photovoltaics is of paramount importance to IoT sustainability," says Freitag.

Research paper


Related Links
Uppsala University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Kimberly-Clark backs local 3MW solar farm in LaGrange, Georgia
LaGrange GA (SPX) Feb 28, 2020
A 3MW solar photovoltaic (PV) project has been completed and commercialized by United Renewable Energy at Kimberly-Clark's facility in LaGrange, Georgia. The project was the result of collaboration between Kimberly-Clark's facility, United Renewable Energy LLC as the project developer and builder, and NextEra Energy Resources, LLC through a subsidiary, which is the long-term project owner. All of the output from the new solar facility, along with all the renewable energy credits (RECs) will be sol ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Plastic from wood

KIST develops biofuel production process in cooperation with North American researchers

Can palm-oil biodiesel can reduce greenhouse gas emissions

Novel photocatalytic method converts biopolyols and sugars into methanol and syngas

SOLAR DAILY
Pentagon adopts 'ethical principles' for artificial intelligence use

Pentagon adopts ethics for artificial intelligence use

EU seeks 'responsible' AI to dispel Big Brother fears

Autonomous vehicle technology may improve safety for US Army convoys, report says

SOLAR DAILY
Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

Iberdrola will build its next wind farm in Spain with the most powerful wind turbine

UK looks to offshore wind for green energy transition

SOLAR DAILY
Alphabet's Waymo raises $2.25 bn to rev up autonomous projects

Luxembourg becomes first country with free public transport

VW ditches natural gas to focus on e-cars

VW strikes 'dieselgate' compensation deal with German consumers

SOLAR DAILY
Potassium metal battery emerges as a rival to lithium-ion technology

Manipulating atoms to make better superconductors

Scientists created an 'impossible' superconducting compound

Isotope movement holds key to the power of fusion reactions

SOLAR DAILY
Framatome opens new research and operations center and expands Intercontrole in Cadarache, France

Study analyzes impact of switch from nuclear power to coal, suggests directions for policy

GE Hitachi Progresses Vendor Design Review in Canada for BWRX-300 Small Modular Reactor

VTT develops a Small Modular Reactor for district heating

SOLAR DAILY
Daimler targets 20% cut in European CO2 output for 2020

Coronavirus outbreak slashes China carbon emissions: study

Extreme weather to overload urban power grids, study shows

EU chief pleads to save green deal in budget holed by Brexit

SOLAR DAILY
Bushfires burned a fifth of Australia's forest: study

Hurricanes benefit mangroves in Florida's Everglades, study finds

Satellite image data reveals rapid decline of China's intertidal wetlands

Hungary's Orban vows to plant 10 trees for every newborn









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.