Solar Energy News  
NANO TECH
New 'ukidama' nanoparticle structure revealed
by Staff Writers
Onna, Okinawa, Japan (SPX) Jun 17, 2016


The researchers discovered a new nanoparticle structure that resemble the ukidama, glass fishing floats, used regularly by Japanese fishermen. The nanoparticle has a core of one element (copper) and is surrounded by a "cage" of another element (silver). The silver does not cover certain areas of the copper core, which is very similar to the rope that surrounds the glass float. For a larger version of this image please go here. Watch a video on the research here.

Sometimes it is the tiny things in the world that can make an incredible difference. One of these things is the nanoparticle. Nanoparticles may be small, but they have a variety of important applications in areas such as, medicine, manufacturing, and energy. A team of researchers from Okinawa Institute of Science and Technology Graduate University (OIST) recently discovered a unique copper-silver nanoparticle structure that has a core of one element surrounded by a "cage" of the other element.

However, the cage does not cover certain areas of the core, which very much resembles the Japanese glass fishing floats traditionally covered with rope called ukidama. This previously undiscovered ukidama structure may have properties that can help the team on their mission for optimal nanotechnology. The results have been published in Nanoscale.

"The ukidama is a unique structure, which means that it can likely give us unique properties," said Panagiotis Grammatikopoulos, first author and group leader of the OIST Nanoparticles by Design Unit. "The idea is that now that we know about this structure we may be able to fine tune it to our applications."

The OIST researchers are continually working to create and design nanoparticles that can be used in biomedical technology. Specifically, the team works to design the optimal nanoparticles for technologies like smart gas sensors that can send information about what is going on inside your body to your smart phone for better diagnoses.

Another application is the label free biosensor, a device that can detect chemical substances without the hindrance of fluorescent or radioactive labels. The identification of the ukidama structure is important in this endeavour because having a new structure increases the possibilities for technological advancements.

"The more parameters that we can control the more flexibility we have in our applications and devices," Prof. Mukhles Sowwan, author and head of OIST's Nanoparticles by Design Unit said. "Therefore, we need to optimize many properties of these nanoparticles: the size, chemical composition, crystallinity, shape, and structure."

The discovery of the ukidama structure was found through sputtering copper and silver atoms simultaneously, but independently, through a magnetron-sputtering system at high temperatures. When the atoms began to cool they combined into bi-metallic nanoparticles. During the sputtering process, researchers could control the ratio of silver to copper, with the rate of power with which the atoms were sputtered.

They found that the ukidama structure was possible, especially when the copper was the dominant element, since silver atoms have a higher tendency to diffuse on the nanoparticle surface. From their experimental findings, the team was able to create simulations that can clearly show how the ukidama nanoparticles form.

The team is now looking to see if this structure can be recreated in other types of nanoparticles, which could be an even bigger step in the optimization of nanoparticles for biomedical application and nanotechnology.

"We design and optimize nanoparticles for biomedical devices and nanotechnology," Sowwan said. "Because the ukidama is a new structure, it may have properties that could be utilized in our applications."

Co-author, Antony Galea, formerly of the Nanoparticles by Design Unit, was responsible for the experimental portion of this study and has since moved to OIST's Technology and Licensing Section to help research - like this work being done with nanoparticles that can be utilized in applications - move into the market.

"Our aim is to take research created by OIST from the lab to the real world," Galea said. "This is a way that work done at OIST, such as by the Nanoparticles by Design Unit, can benefit society."

Research paper: Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Shaping atomically thin materials in suspended structures
Sendai, Japan (SPX) Jun 15, 2016
Researchers at Tohoku University have realized wafer-scale and high yield synthesis of suspended graphene nanoribbons. The unique growth dynamic has been elucidated through comparing experiments, molecular dynamics simulations and theoretical calculations made with researchers from the University of Tokyo and Hokkaido University. Adding a mechanical degree of freedom to the electrical and ... read more


NANO TECH
Bioenergy integrated in the bio-based economy crucial to meet climate targets

Chemicals from wood waste

New 3-D printed polymer can convert methane to methanol

Nissan bets on ethanol for fuel-cell vehicles

NANO TECH
How insights into human learning can foster smarter artificial intelligence

China's Midea begins takeover bid for German robotics firm

Robots to provide a steadying hand at the right time

Flight of the RoboBee

NANO TECH
Renewables getting cheaper, report finds

Gamesa, Siemens join forces to create global wind power leader

Germany slows pace of green energy transition

Ireland aims for greener future

NANO TECH
Olli, a 3D printed, self-driving minibus, to hit the road in US

US authorities extend deadline for VW in 'dieselgate' scandal

China's Uber rival Didi Chuxing raises $7.3 bn in new capital

What's driving the next generation of green products?

NANO TECH
Loofah-based material could give lithium batteries a boost

A new way to control oxygen for electronic properties

Efficient hydrogen production made easy

Storage technologies for renewable energy can pay off

NANO TECH
New material has potential to cut costs and make nuclear fuel recycling cleaner

Southern Research launches 'Gen IV' nuclear power effort with key hire

Proposed bilateral deal allows US to share nuclear reactors with Norway

Dutch probe cross-border nuclear safety

NANO TECH
Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

Changing the world, 1 fridge at a time

NANO TECH
California's urban trees offer $1 billion in benefits

Yellow Meranti tree in Malaysia is likely the tallest in the tropics

Guatemalan drug lords burning forests to land planes

Beetles, the axe: double trouble for prized Polish forest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.