Solar Energy News  
TECH SPACE
New understanding of how shape and form develop in nature
by Staff Writers
Cambridge, UK (SPX) Dec 11, 2015


Morphogenesis. Image courtesy Stoyan Smoukov. For a larger version of this image please go here.

Researchers have developed a new method for generating complex shapes, and have found that the development of form in nature can be driven by the physical properties of materials themselves, in contrast with earlier findings. The results, reported in the journal Nature, could enable the construction of complex structures from simple components, with potential applications in pharmaceuticals, paints, cosmetics and household products such as shampoo.

Using a simple set-up - essentially droplets of oil in a soapy water solution which were slowly frozen - the researchers found that recently-discovered 'plastic crystal' phases formed on the inside surfaces of the droplets cause them to shape-shift into a wide variety of forms, from octahedrons and hexagons to triangles and fibres.

Previous efforts to create such complex shapes and structures have used top-down processing methods, which allow a high degree of control, but are not efficient in terms of the amount of material used or the expensive equipment necessary to make the shapes. The new method, developed by researchers from the University of Cambridge and Sofia University in Bulgaria, uses a highly efficient, extremely simple bottom-up approach to create complex shapes.

"There are many ways that non-biological things take shape," said Dr Stoyan Smoukov from Cambridge's Department of Materials Science and Metallurgy, who led the research. "But the question is what drives the process and how to control it - and what are the links between the process in the biological and the non-biological world?"

Smoukov's research proposes a possible answer to the question of what drives this process, called morphogenesis. In animals, morphogenesis controls the distribution of cells during embryonic development, and can also be seen in mature animals, such as in a growing tumour.

In the 1950s, the codebreaker and mathematician Alan Turing proposed that morphogenesis is driven by reaction-diffusion, in which local chemical reactions cause a substance to spread through a space. More recent research, from Smoukov's group and others, has proposed that it is physical properties of materials that control the process. This possibility had been anticipated by Turing, but it was impossible to determine using the computers of the time.

What this most recent research has found is that by slowly freezing oil droplets in a soapy solution, the droplets will shape-shift through a variety of different forms, and can shift back to their original shape if the solution is re-warmed. Further observation found that this process is driven by the self-assembly of a plastic crystal phase which forms beneath the surface of the droplets.

"Plastic crystals are a special state of matter that is like the alter ego of the liquid crystals used in many TV screens," said Smoukov.

Both liquid crystals and plastic crystals can be thought of as transitional stages between liquid and solid. While liquid crystals point their molecules in defined directions like a crystal, they have no long-range order and flow like a liquid. Plastic crystals are wax-like with long-range order in their molecular arrangement, but disorder in the orientation of each molecule. The orientational disorder makes plastic crystals highly deformable, and as they change shape, the droplets change shape along with them.

"This plastic crystal phase seems to be what's causing the droplets to change shape, or break their symmetry," said Smoukov. "And in order to understand morphogenesis, it's vital that we understand what causes symmetry breaking."

The researchers found that by altering the size of the droplets they started with or the rate that the temperature of the soapy solution was lowered, they were able to control the sequence of the shapes the droplets ended up forming. This degree of control could be useful for multiple applications - from pharmaceuticals to household goods - that use small-droplet emulsions.

"The plastic crystal phase has been of intense scientific interest recently, but no one so far has been able to harness it to exert forces or show this variety of shape-changes," said the paper's lead author Professor Nikolai Denkov of Sofia University, who first proposed the general explanation of the observed transformations.

"The phenomenon is so rich in combining several active areas of research that this study may open up new avenues for research in soft matter and materials science," said co-author Professor Slavka Tcholakova, also of Sofia University.

"If we're going to build artificial structures with the same sort of control and complexity as biological systems, we need to develop efficient bottom-up processes to create building blocks of various shapes, which can then be used to make more complicated structures," said Smoukov. "But it's curious to observe such life-like behaviour in a non-living thing - in many cases, artificial objects can look more 'alive' than living ones."

Denkov, Nikolai et. al. 'Self-Shaping of Droplets via Formation of Intermediate Rotator Phases upon Cooling.' Nature (2015). DOI: 10.1038/nature16189.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Cambridge
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Penn researchers make thinnest plates that can be picked up by hand
Philadelphia, PA (SPX) Dec 09, 2015
Scientists and engineers are engaged in a global race to make new materials that are as thin, light and strong as possible. These properties can be achieved by designing materials at the atomic level, but they are only useful if they can leave the carefully controlled conditions of a lab. Researchers at the University of Pennsylvania have now created the thinnest plates that can be picked up and ... read more


TECH SPACE
OX2 wins concession for one of Sweden's largest biogas plants

A more efficient way of converting ethanol to a better alternative fuel

Now is the time to uncover the secrets of the Earth's microbiomes

Brazil pins renewable energy hopes on 2nd generation ethanol

TECH SPACE
Kennedy now firmly established as a 21st Century Spaceport

These are the robots you're looking for

Japan shows off disaster-response robots at android fair

High-tech Barbie stokes privacy fears

TECH SPACE
UN report takes global view of 'green energy choices'

Dogger Bank lidar confirms technology meets met masts for wind data collection

U.S. offshore wind project wraps up inaugural construction season

Pilot Hill Wind Project Closes Financing from GE and MetLife

TECH SPACE
GM to sell China-made vehicle in US first

UAW halts strike at China-owned US auto plant

Eliminating 'springback' to help make environmentally friendly cars

S. Korea unveils ambitious green car push

TECH SPACE
36 countries launch world alliance for geothermal energy

Saft to supply LION batteries to power Textron control stations

Australia riding coal train despite climate pleas

Energy Storage Veterans - Lithium Battery Fire Safety Redefined

TECH SPACE
New Delhi to construct six fast breeder reactors over 15 years

Russian ready to reprocess spent Fukushima nuclear fuel

South Korea offers to participate in Czech nuclear program

PPPL physicists propose new plasma-based method to treat radioactive waste

TECH SPACE
CO2 emissions set for historic fall in 2015: study

Mexico to spend $23 billion to cut greenhouse gases

New Zealand joins geothermal alliance

As Paris summit tries to save the planet, how green is France?

TECH SPACE
N. Korea 'declares war' on deforestation at Paris climate talks

At UN talks, African countries aim to restore 100 mn hectares of forest

Eyes in the sky track health of Earth's African 'lung'

'Traditional authority' linked to rates of deforestation in Africa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.