Solar Energy News  
CHIP TECH
Next-generation electronics one leap closer to reality
by Staff Writers
Salt Lake City UT (SPX) Apr 09, 2018

The researchers from left to right: Joel Miller, Royce Davidson, Hans Malissa, Haoliang Liu and Christoph Boehme.

In 1991, University of Utah chemist Joel Miller developed the first magnet with carbon-based, or organic, components that was stable at room temperature. It was a great advance in magnetics, and he's been exploring the applications ever since.

Twenty-five years later, physicists Christoph Boehme and Valy Vardeny demonstrated a method to convert quantum waves into electrical current. They too, knew they'd discovered something important, but didn't know its application.

Now those technologies have come together and could be the first step towards a new generation of faster, more efficient and more flexible electronics.

Working together, Miller, Boehme, Vardeny and their colleagues have shown that an organic-based magnet can carry waves of quantum mechanical magnetization, called magnons, and convert those waves to electrical signals. It's a breakthrough for the field of magnonics (electronic systems that use magnons instead of electrons) because magnons had previously been sent through inorganic materials that are more difficult to handle.

"Going to these organic materials, we have an opportunity to push magnonics into an area that is more controllable than inorganic materials," Miller says. Their results are published in Nature Materials.

How magnonics works
Before proceeding, let's talk about what a magnon is and how it can be used in electronics. Current electronics use electrons to carry information along wires. Magnons can also conduct information through materials, but instead of being composed of electrons, magnons are waves composed of a quantum property called spin.

Imagine a football stadium, packed full of enthusiastic fans holding up their arms to cheer on their team. Let's say that the direction in which their arms point is their spin orientation. If every fan holds their arms straight up in the air simultaneously, then everyone's spin orientation is the same and they've made, in essence, a magnet.

Now the crowd starts "The Wave," except instead of standing and sitting, one aisle of fans tilts their arms to the right. The next aisle picks up on this change in spin and passes it along to the next row. Before long, this magnet has a spin-based wave coursing around the stadium.

The quantum version of the spin-based wave is a magnon.

"Now you have a way to broadcast information in a material," says physics professor and paper co-author Boehme. "You can think about magnonics like electronics. You have circuitry and when you manage to build digital logic out of this, you can also build computers."

Well, not yet. Although magnons have been known to science for decades, only recently has their potential for building electronics been realized.

Currently, most magnonics researchers are using yttrium iron garnet (YIG) as their wave carrier material. It's expensive and difficult to produce, especially as a thin film or wire. Boehme says he once considered incorporating YIG into one of his instruments and had to give up because the material proved so problematic to handle that particular application.

Assembling the team
Boehme and Vardeny, distinguished professor of physics, also study the field of alternatives to electronics called spintronics, of which magnonics is a subfield. In 2016 they showed how to straightforwardly observe the "inverse spin Hall effect," a way to convert spin waves into electrical current.

They began working together with Miller through a National Science Foundation-funded Materials Research Science and Engineering Center (MRSEC) at the University of Utah. In 1991, Miller had produced the first magnetic material using organic, or carbon-based, components. The three decided to test Miller's organic magnet to see if it could be used as an alternative to YIG in magnonics materials. They tested for electron spin resonance (ESR), a measure of how long magnons would last in the material. The narrower the ESR line, the longer-lived the magnons.

The line was very narrow indeed, Vardeny says. "It's a record narrow line."

But working with the organic-based magnet, known as vanadium tetracyanoethylene or V(TCNE)x, still presented some challenges. The material is highly sensitive to oxygen, akin to rare-earth magnets. "If it's freshly made, it'll likely catch fire," Miller says. "It'll lose its magnetism." The team needed to handle the thin films of V(TCNE)x under low-oxygen conditions.

Conducting experiments required a concert of activity, with members of the research team each at their right place at the right time to carry on the next phase of the experiment.

"Count the number of authors on the paper," Boehme says. (There are 14.) "Every time we carried out an experiment, everyone had to stand there and be ready on time to participate in this process." It began with one of Miller's students arriving at 4 a.m. to prepare a precursor material and continued for two to three days continuously as research teams passed the baton of material and data.

Not every experimental run was successful. Early on, the team learned that the copper connector they were using to convert magnons into electricity using the inverse spin Hall effect was reacting with the V(TCNE)x and thus wouldn't work. A switch to platinum contacts in the next run was successful.

Promising results
In the end, the team reported that they were able to generate stable magnons in organic magnets and convert those spin waves into electrical signals - a major stepping stone. The stability of the magnons in the V(TCNE)x was as good as that in YIG.

The researchers are hopeful that this advance leads to more progress towards magnonics replacing electronics, since magnonic systems could be smaller and faster than current systems with less heat loss and much less energy required. Conventional electronics operate on a scale of volts, Boehme says. Magnons operate on a scale of millivolts, containing around 1,000 times less energy.

The team next hopes to work toward magnonic circuits using V(TCNE)x, and also test other materials. "There are many organic-based magnets," Boehme says. "There's no reason to believe that if you randomly pick one, it's necessarily the best."

It's yet to be seen, though, what the promise of magnonics might bring beyond faster, smaller and more efficient electronics. "We can't anticipate," Miller says, "what we can't anticipate."

Research paper


Related Links
University of Utah
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Precision atom qubits achieve major quantum computing milestone
Sydney, Australia (SPX) Apr 06, 2018
The unique Australian approach of creating quantum bits from precisely positioned individual atoms in silicon is reaping major rewards, with UNSW Sydney-led scientists showing for the first time that they can make two of these atom qubits "talk" to each other. The team - led by UNSW Professor Michelle Simmons, Director of the Centre of Excellence for Quantum Computation and Communication Technology, or CQC2T - is the only group in the world that has the ability to see the exact position of their q ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Notre Dame researchers developing renewable energy approach for producing ammonia

New insights into how cellulose is built could indicate how to break it

Sewage sludge leads to biofuels breakthrough

Wood pellets: Renewable, but not carbon neutral

CHIP TECH
How accurate is your AI

Make way for the mini flying machines

Tokyo Tech's six-legged robots get closer to nature

Novel 3-D printing method embeds sensing capabilities within robotic actuators

CHIP TECH
China considering energy storage mandate for wind

California considered for offshore wind

The Evolution of Wind Power in 2017

Detection, deterrent system will help eagles, wind turbines coexist better

CHIP TECH
US investigating fatal Tesla crash in California

Tesla says 'Autopilot' was engaged during fatal crash

Research hints at double the driving range for electric vehicles

Waymo and Jaguar team up on self-driving luxury ride

CHIP TECH
Knitting electronics with yarn batteries

A new way to find better battery materials

Researchers charge ahead to develop better batteries

Superconductivity in an alloy with quasicrystal structure

CHIP TECH
Nuclear safety: AREVA develops an innovative technology for reactor inspection

NRC approval brings Framatome's fuel technology closer to market

Putin launches Turkey nuclear project, vows faster arms delivery

UAE says its first nuclear reactor complete

CHIP TECH
Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

Puerto Rico power grid snaps, nearly 1 million in the dark

Grids from Turkmenistan, Afghanistan and Pakistan could be connected

CHIP TECH
Palm trees are spreading northward - how far will they go?

Soil fungi may help determine the resilience of forests to environmental change

Drought-induced changes in forest composition amplify effects of climate change

Amazon deforestation is close to tipping point









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.