![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Ulsan, South Korea (SPX) Apr 04, 2017
A recent study, affiliated with UNIST has presented a new cost-efficient way to produce inorganic-organic hybrid perovskite solar cells (PSCs) which sets a new world-record efficiency performance, in particular photostability. The research team envisions that this method and platform will significantly contribute to accelerate the commercialization of PCSs. This breakthrough comes from a research, conducted by Distinguished Professor Sang-Il Seok of Energy and Chemical Engineering at UNIST in collaboration with Dr. Seong Sik Shin and Dr. Jun Hong Noh of Korea Research Institute of Chemical Technology (KRICT). Their results, published online in the March issue of the prestigious journal Science, has emerged as the most promising candidate for the next generation high efficiency solar cell technology. PSCs are made of a mixture of organic molecules and inorganic elements within a single crystalline structure, that together capture light and convert it into electricity. It is an unique crystal structures, consisting of two cations and one anion. They can be fabricated easily and cheaply than silicon-based solar cells, and on a flexible and rigid substrate. Moreover, PSCs reaching a photovoltaic efficiency of 22.1%, comparable to that of single crystalline silicon solar cells (25%), have been attracted much attention as the next-generation solar cells. Professor Seok has led PSC technology as top scientist in the field. This achievement is based on the previous works (new architecture, process and composition for PSCs) by Professor Sang-Il Seok. In this study, the research team reported the fabrication of PSCs satisfying both high efficiency (21.2%) and high photostability of the perovskite solar cells with photoelectrode materials (Lanthanum (La)-doped BaSnO3 (LBSO)) synthesized by a very novel method under very mild conditions (below 200 C). They used methylammonium lead iodide (MAPbI3) peorvskite materials for PSCs. Photostability refers to the ability to withstand exposure to light without a serios degradation. This new material, presented by Professor Seok's research team also retain 93% of its initial performance after 1,000 hours of exposure to sunlight. The synthesis of the photoelectrode material can also proceed at less than 200 ?, which is much lower than that of conventional (high temperature over 900 ?), making fabrication much easier. In the study, the research team has also proposed a new solar cell manufacturing methodology, entitled 'Hot-Pressing Method'. This method tightly adheres two objects by applying temperature and pressure. It allows the production of low-cost, high efficiency and stable perovskite solar cells. "This study combines the newly-synthesized photoelectrode material and the hot-pressing method to lower the manufacturing cost to less than half of the existing silicon solar cells," says Professor Seok, corresponding author of the paper. "This study helped us realize PSCs with a steady-state power conversion efficiency of 21.2% and excellent photostability." He adds, "This achievement, realized by the unique technology of domestic researchers, has surpassed the conventional low-efficiency and stability limit of next-generation solar cell technology." Seong Sik Shin, et al., "Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells," Science, (2017).
![]() Melbourne, Australia (SPX) Apr 04, 2017 Inspired by an American fern, researchers have developed a groundbreaking prototype that could be the answer to the storage challenge still holding solar back as a total energy solution. The new type of electrode created by researchers from RMIT University in Melbourne, Australia, could boost the capacity of existing integrable storage technologies by 3000 per cent. But the graphene-based ... read more Related Links Ulsan National Institute of Science and Technology(UNIST) All About Solar Energy at SolarDaily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |