Subscribe free to our newsletters via your
. Solar Energy News .




BLUE SKY
No Limits to Human Effects on Clouds
by Staff Writers
Rehovot, Israel (SPX) Jun 10, 2014


Convective clouds forming over the Amazon in a blanket smoke. Image courtesy Prof. Ilan Koren.

Understanding how clouds affect the climate has been a difficult proposition. What controls the makeup of the low clouds that cool the atmosphere or the high ones that trap heat underneath? How does human activity change patterns of cloud formation? The research of the Weizmann Institute's Prof. Ilan Koren suggests we may be nudging cloud formation in the direction of added area and height.

He and his team have analyzed a unique type of cloud formation; their findings, which appeared recently in Science indicate that in pre-industrial times, there was less cloud cover over areas of pristine ocean than is found there today.

Clouds need tiny particles called aerosols that rise in the atmosphere, in order to form. These aerosols - natural ones like sea salt or dust, or such human-made ones as soot - form nuclei around which the cloud droplets condense. In relatively clean environments, clouds can only grow as large as the amount of aerosols in the atmosphere allows: They will be the limiting factor in cloud formation.

The question is: Does the current load of aerosols in the atmosphere already exceed that limit, in which case adding extra particles should not greatly affect cloud formation; or do they continue to be a limiting factor as pollution rises, so that added aerosols would continue to influence the clouds?

A model developed by Koren and his team showed that an increase in aerosols, even in relatively polluted conditions, should result in taller, larger clouds that rain more aggressively. But proving the model was another story: Experimenting on clouds, or even finding ways to isolate the various factors that go into their formation in real time, is a highly difficult undertaking.

Koren, research student Guy Dagan and Dr. Orit Altaratz in the Earth and Planetary Sciences Department looked to an unlikely place to test their model: near the horse latitudes. These are subtropical regions far out in the oceans that were reviled in the past by sailors because the winds that carried their sails would die out there for weeks on end.

Here was a lab for them to test the basic physics of their model: an atmospheric region controlled by well-defined meteorological conditions, which was sometimes pristine, sometimes containing low levels of aerosols. If the model was correct, transitions from one to the other should be dramatic. And they wanted to test their theory on the clouds that do form in this region - warm convective clouds that are fuelled by the ocean's moisture.

With other potential factors - wind, large temperature swings or land formations - out of the way, the team could concentrate on the aerosols, comparing daily satellite images of cloud cover and measurements of the aerosol load to the predictions of the model. Using many different types of analysis, they found that their model closely matched the satellite observations.

They then looked at another source of data: that of the Clouds' and the Earth's Radiant Energy System (CERES) satellite instruments which measure fluxes of reflected and emitted radiation from the Earth to space, to help scientists understand how the climate varies over time. When analyzed together with the aerosol loading over the same area at the same time, the outcome, says Koren, was a "textbook demonstration of the invigoration effect" of added aerosols on clouds.

In other words, the radiation data fit the unique signature of clouds that were growing higher and larger. Such clouds show a strong increase in cooling due to the reflected short waves, but that effect is partly cancelled out by the enhanced, trapped, long-wave radiation coming from underneath.

At least over the oceans, the pre-industrial cloud conditions would have been considerably different from those of today; this implies that the aerosols we have been adding to the atmosphere may have had a significant effect on global patterns of cloud formation and rain.

Koren: "We showed that convective clouds do not necessarily stop being aerosol-limited; under relatively polluted conditions the increase in aerosol loading will make the clouds taller, larger and their rain-rate stronger. As the area of this cloud cover grows, it reflects more of the shortwave radiation; but as the clouds get taller, their greenhouse effect becomes more significant, counteracting about half of their total cooling effect."

.


Related Links
Weizmann Institute
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BLUE SKY
Cleaning the Air with Roof Tiles
Riverside CA (SPX) Jun 05, 2014
A team of University of California, Riverside's Bourns College of Engineering students created a roof tile coating that when applied to an average-sized residential roof breaks down the same amount of smog-causing nitrogen oxides per year as a car driven 11,000 miles. They calculated 21 tons of nitrogen oxides would be eliminated daily if tiles on one million roofs were coated with their t ... read more


BLUE SKY
Genome could unlock eucalyptus potential for paper, fuel and fiber

More than just food for koalas -- eucalyptus -- a global tree for fuel and fiber

EU agrees plan to cap use of food-based biofuels

York scientists provide new insights into biomass breakdown

BLUE SKY
New computer program aims to teach itself everything about anything

Capabilities of unmanned ground vehicles on display

Supercomputer emulates teenager to pass 'Turing Test'

Football-playing robots eye their own cup, and beyond

BLUE SKY
Scotland attracts more investments to renewable energy sector

Sopcawind, a multidisciplinary tool for designing wind farms

Scotland says it's well on its way to cut emissions by as much as 80 percent

Snake-like buoys showing their energy mettle off Scottish coast

BLUE SKY
Tesla gives up patents to 'open source movement'

European taxis cause chaos in app protest

Elon Musk: 'We could definitely make a flying car'

Uber taxi app valued at $17 bn in new funding round

BLUE SKY
Funky ferroelectric properties probed with X-rays

Magnetic cooling enables efficient, 'green' refrigeration

Charging Portable Electronics in 10 Minutes

Coal consumption highest since 1970

BLUE SKY
AREVA awarded a contract to provide services for Kozloduy 5 and 6 VVER nuclear reactors

AREVA to provide additional modernization services for Gosgen Facility in Switzerland

India nuclear reactor attains 'full capacity'

French police raid Areva over UraMin purchase

BLUE SKY
US invests in technology to make electric grid more secure

Report Estimates Costs and Benefits of Compliance with Renewable Portfolio Standards

Google seeks to transform century-old US utility industry

Virginia Tech architect reveals 'green roofs' need not go to great depths to work

BLUE SKY
Australian natural wonders under UNESCO spotlight

Saving trees in tropics could cut emissions by one-fifth

Forest loss starves fish

For forests, an earlier spring than ever




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.