Solar Energy News  
CHIP TECH
Noise can't hide weak signals from this new receiver
by Staff Writers
San Diego CA (SPX) Dec 15, 2015


Stojan Radic.

Electrical engineers at the University of California, San Diego developed a receiver that can detect a weak, fast, randomly occurring signal. The study, published in Science, lays the groundwork for a new class of highly sensitive communication receivers and scientific instruments that can extract faint, non-repetitive signals from noise. The advance has applications in secure communication, electronic warfare, signal intelligence, remote sensing, astronomy and spectroscopy.

The research is motivated by a long-standing need to capture random, singly-occurring phenomena in nature and in communications. An example of these includes the spontaneous decay of a molecule, an event that emits a single noisy signal and therefore eludes detection by conventional methods.

Because a standard detector must repeat measurements of the event multiple times to confirm its existence, it prevents, in principle, the capture of a random, non-repetitive event. Another limitation is that the capture of a fast event requires an equally fast detector.

To overcome the limitations of conventional detection methods, UC San Diego researchers developed a spectral-cloning receiver that works by replicating the received noisy signal to generate multiple spectral (colored) copies, and then combines these copies to reveal the existence of the signal within the noise.

"With the new receiver, it is now possible, at least in principle, to capture an ephemeral, non-repeating signal and observe fast, sparsely occurring natural or artificial phenomena - that would otherwise be invisible to us - over a long period of time, using a slow detector," said Stojan Radic, an electrical engineering professor in the Jacobs School of Engineering at UC San Diego and senior author of the study

In the Science paper, researchers report that the spectral-cloning receiver they developed "can potentially intercept communication signals that are presently considered secure." These signals are based on singly-occurring bursts, which disappear before another measurement can be taken to separate noise.

Radic also noted that the receiver could enable communication at a longer distance and with higher security. For example, it would be possible to bury the communication channel in noise and still detect it using the new receiver, while being well below the sensitivity threshold of conventional detectors.

The new receiver physics can be compared to a "temporal microscope": it can see a very fast, faint signal while observing over a much larger time interval. However, while an ordinary microscope cannot eliminate surrounding image noise, the new receiver can differentiate between the noise and the signal fields.

In their experiments, the team used a new class of tunable optical frequency combs - developed in Radic's Photonics Systems Group at UC San Diego - to simultaneously create multiple spectral clones of a fast pulse. Researchers combined these clones to extract the signal from the noise and were able to reconstruct its timing and shape. They found that a higher spectral clone count resulted in higher sensitivity of signal detection by the spectral-cloning receiver.

"We were surprised that this concept could be scaled up to a high number of spectral copies. We are now able to construct a receiver that operates on hundreds of freely tunable copies," said Radic. "This work is a result of long-standing research on tunable frequency combs at UC San Diego. The new class of combs are nearly noise-free and, in contrast to conventional frequency combs, can be freely tuned over a wide spectral range."

Full paper: "Subnoise detection of a fast random event," by V. Ataie, D. Esman, B. P.-P. Kuo, N. Alic, and S. Radic. The paper is published in the Dec. 11, 2015 issue of Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - San Diego
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Spin current on topological insulator detected at room temps
Goteborg, Sweden (SPX) Dec 12, 2015
Researchers at Chalmers University of Technology have for the first time reported the electrical detection of spin current on topological insulator surfaces at room temperature by employing a ferromagnetic detector. The findings have been published in the journal Nano Letters. Solid-state materials were conventionally divided into three different classes such as conductors, semiconductors ... read more


CHIP TECH
Scientists unveil urine-powered wearable energy generator

Turning poop into plastic at Paris climate talks

New catalyst to make eco-fiendly bio-based plastics possible

Plant-inspired power plants

CHIP TECH
Scientists teach machines to learn like humans

Robot adds new twist to NIST antenna measurements and calibrations

UW roboticists learn to teach robots from babies

Swimming devices could deliver drugs inside the body

CHIP TECH
U.S. offshore wind project wraps up inaugural construction season

Dogger Bank lidar confirms technology meets met masts for wind data collection

Pilot Hill Wind Project Closes Financing from GE and MetLife

German power giant RWE to spin off renewables business

CHIP TECH
Cars driving the rebalancing of Chinese economy: IEA

Volkswagen says pollution cheating dates back to 2005

Volkswagen to start recalls in France in February

Mystery electric car startup unveils $1 bn US factory

CHIP TECH
Thermally-durable all-solid-state lithium ion battery developed

Could metal particles be the clean fuel of the future

NREL research advances understanding of photoelectrodes

Carbon capture analyst: 'Coal should stay in the ground'

CHIP TECH
China to Operate 110 Nuclear Reactors by 2030

Japan and India agree bullet train, nuclear deals

AREVA wins contract to dismantle the vessel internals of the Superphenix reactor

New Delhi to construct six fast breeder reactors over 15 years

CHIP TECH
MIT Research offers new approach for China's carbon trading system

UN climate deal blow to fossil fuels: green groups

Addressing climate change should start with energy efficiency

As Paris summit tries to save the planet, how green is France?

CHIP TECH
US forest products in the global economy

N. Korea 'declares war' on deforestation at Paris climate talks

At UN talks, African countries aim to restore 100 mn hectares of forest

Eyes in the sky track health of Earth's African 'lung'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.