Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Novel technique for chemical identification at the nanometer scale developed
by Staff Writers
Urbana IL (SPX) Mar 14, 2013


Atomic force microscope infrared spectroscopy (AFM-IR) of polymer nanostructures.

For more than 20 years, researchers have been using atomic force microscopy (AFM) to measure and characterize materials at the nanometer scale. However AFM-based measurements of chemistry and chemical properties of materials were generally not possible, until now.

Researchers at the University Illinois report that they have measured the chemical properties of polymer nanostructures as small as 15 nm, using a novel technique called atomic force microscope infrared spectroscopy (AFM-IR).

The article, "Atomic force microscope infrared spectroscopy on 15nm scale polymer nanostructures," appears in the Review of Scientific Instruments 84, published by the American Institute of Physics.

"AFM-IR is a new technique for measuring infrared absorption at the nanometer scale," explained William P. King, an Abel Bliss Professor in the Department of Mechanical Science and Engineering at Illinois. "The first AFM-based measurements could measure the size and shape of nanometer-scale structures. Over the years, researchers improved AFM to measure mechanical properties and electrical properties on the nanometer scale.

"These infrared absorption properties provide information about chemical bonding in a material sample, and these infrared absorption properties can be used to identify the material," added King, who is also the director of the National Science Foundation (NSF) Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems at Illinois.

"The polymer nanostructures are about an order of magnitude smaller than those measured previously."

The research is enabled by a new way to analyze the way the nanometer-scale dynamics within the AFM-IR system. The researchers analyzed the AFM-IR dynamics using a wavelet transform, which organizes the AFM-IR signals that vary in both time and in frequency.

By separating the time and frequency components, the researchers were able to improve the signal to noise within AFM-IR and to thereby measure significantly smaller samples than previously possible.

The ability to measure the chemical composition of polymer nanostructures is important for a variety of applications, including semiconductors, composite materials, and medical diagnostics.

The authors on the research are Jonathan Felts, Hanna Cho, Min-Feng Yu, Lawrence Bergman, Alex Vakkakis, and William P. King.

.


Related Links
Department of Mechanical Science and Engineering at Illinois
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Star-shaped waves spotted in shaken fluid
London, UK (SPX) Mar 13, 2013
A new wave phenomenon in liquids has been spotted by physicists in France. By shaking small cylindrical dishes of silicone oil, the team created standing waves that spontaneously form a range of patterns, including stars and polygons. Calculations suggest that the shapes are caused by nonlinear interactions between "gravity waves" - the name given to any fluid wave in which gravity is the ... read more


TECH SPACE
Biobatteries catch breath

Biodiesel algae: Starvation diets damage health

Using photosynthesis to make chemical compounds

Duckweed as a cost-competitive raw material for biofuel production

TECH SPACE
Google buys machine learning startup

Videoconference robot Beam walks the walk at SXSW

An Internet for robots

Germany eyes new Internet industrial revolution

TECH SPACE
Court ruling halts British wind farm

Wind power as a cost-effective long-term hedge against natural gas prices

British National Trust opposes wind farms

Prysmian Gets New Contract For Connection Of Offshore Wind Park

TECH SPACE
Americans still use phones while driving: survey

Answering messages behind the wheel is as dangerous as being twice over the limit

Japan auto giants to give workers a bonus boost

China auto sales rise in Jan-Feb: industry group

TECH SPACE
Paraffin encapsulated in beach sand material as a new way to store heat from the sun

Biobatteries catch breath

Iran pipeline to Pakistan tests U.S. stand

Catalysts that produce 'green' fuel

TECH SPACE
Nuclear group Areva insists public trusts sector

Budget cuts could hamper nuclear cleanup

Anti-nuclear rally in Tokyo ahead of tsunami anniversary

AREVA produces the first fuel assemblies for the Chinese EPR reactors

TECH SPACE
The household carbon emission per capita in Northwestern China is only 2.05 tons CO2 per year

Court battle looms over Chile power plant

California Ranked First in the US for Green Jobs Last Year

Opportunities And Obstacles Fulfilling California's Nation-Leading Energy Policies

TECH SPACE
Logging debris gives newly planted Douglas-fir forests a leg-up

Are tropical forests resilient to global warming?

Protected areas prevent deforestation in Amazon rainforest

Nations boost efforts to curb illegal logging




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement