Solar Energy News  
TIME AND SPACE
Novel theory addresses centuries-old physics problem
by Staff Writers
Jerusalem, Israel (SPX) Apr 14, 2021

stock image only

The "three-body problem," the term coined for predicting the motion of three gravitating bodies in space, is essential for understanding a variety of astrophysical processes as well as a large class of mechanical problems, and has occupied some of the world's best physicists, astronomers and mathematicians for over three centuries. Their attempts have led to the discovery of several important fields of science; yet its solution remained a mystery.

At the end of the 17th century, Sir Isaac Newton succeeded in explaining the motion of the planets around the sun through a law of universal gravitation. He also sought to explain the motion of the moon. Since both the earth and the sun determine the motion of the moon, Newton became interested in the problem of predicting the motion of three bodies moving in space under the influence of their mutual gravitational attraction (see attached illustration), a problem that later became known as "the three-body problem".

However, unlike the two-body problem, Newton was unable to obtain a general mathematical solution for it. Indeed, the three-body problem proved easy to define, yet difficult to solve.

New research, led by Professor Barak Kol at Hebrew University of Jerusalem's Racah Institute of Physics, adds a step to this scientific journey that began with Newton, touching on the limits of scientific prediction and the role of chaos in it.

The theoretical study presents a novel and exact reduction of the problem, enabled by a re-examination of the basic concepts that underlie previous theories. It allows for a precise prediction of the probability for each of the three bodies to escape the system.

Following Newton and two centuries of fruitful research in the field including by Euler, Lagrange and Jacobi, by the late 19th century the mathematician Poincare discovered that the problem exhibits extreme sensitivity to the bodies' initial positions and velocities. This sensitivity, which later became known as chaos, has far-reaching implications - it indicates that there is no deterministic solution in closed-form to the three-body problem.

In the 20th century, the development of computers made it possible to re-examine the problem with the help of computerized simulations of the bodies' motion. The simulations showed that under some general assumptions, a three-body system experiences periods of chaotic, or random, motion alternating with periods of regular motion, until finally the system disintegrates into a pair of bodies orbiting their common center of mass and a third one moving away, or escaping, from them.

The chaotic nature implies that not only is a closed-form solution impossible, but also computer simulations cannot provide specific and reliable long-term predictions.

However, the availability of large sets of simulations led in 1976 to the idea of seeking a statistical prediction of the system, and in particular, predicting the escape probability of each of the three bodies. In this sense, the original goal, to find a deterministic solution, was found to be wrong, and it was recognized that the right goal is to find a statistical solution.

Determining the statistical solution has proven to be no easy task due to three features of this problem: the system presents chaotic motion that alternates with regular motion; it is unbounded and susceptible to disintegration.

A year ago, Racah's Dr. Nicholas Stone and his colleagues used a new method of calculation and, for the first time, achieved a closed mathematical expression for the statistical solution. However, this method, like all its predecessor statistical approaches, rests on certain assumptions. Inspired by these results, Kol initiated a re-examination of these assumptions.

The infinite unbounded range of the gravitational force suggests the appearance of infinite probabilities through the so-called infinite phase-space volume. To avoid this pathology, and for other reasons, all previous attempts postulated a somewhat arbitrary "strong interaction region", and accounted only for configurations within it in the calculation of probabilities.

The new study, recently published in the scientific journal Celestial Mechanics and Dynamical Astronomy, focuses on the outgoing flux of phase-volume, rather than the phase-volume itself. Since the flux is finite even when the volume is infinite, this flux-based approach avoids the artificial problem of infinite probabilities, without ever introducing the artificial strong interaction region.

The flux-based theory predicts the escape probabilities of each body, under a certain assumption. The predictions are different from all previous frameworks, and Prof. Kol emphasizes that "tests by millions of computer simulations shows strong agreement between theory and simulation."

The simulations were carried out in collaboration with Viraj Manwadkar from the University of Chicago, Alessandro Trani from the Okinawa Institute in Japan, and Nathan Leigh from University of Concepcion in Chile.

This agreement proves that understanding the system requires a paradigm shift and that the new conceptual basis describes the system well. It turns out, then, that even for the foundations of such an old problem, innovation is possible.

The implications of this study are wide-ranging and is expected to influence both the solution of a variety of astrophysical problems and the understanding of an entire class of problems in mechanics.

In astrophysics, it may have application to the mechanism that creates pairs of compact bodies that are the source of gravitational waves, as well as to deepen the understanding of the dynamics within star clusters. In mechanics, the three-body problem is a prototype for a variety of chaotic problems, so progress in it is likely to reflect on additional problems in this important class.

Research paper


Related Links
The Hebrew University Of Jerusalem
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Scientists at CERN successfully laser-cool antimatter for the first time
Swansea UK (SPX) Apr 01, 2021
Swansea University physicists, as leading members of the ALPHA collaboration at CERN, have demonstrated laser cooling of antihydrogen atoms for the first time. The groundbreaking achievement produces colder antimatter than ever before and enables an entirely new class of experiments, helping scientists learn more about antimatter in future. In a paper published in Nature, the collaboration reports that the temperature of antihydrogen atoms trapped inside a magnetic bottle is reduced when the atoms ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
No batteries, no sweat, wearable biofuel cells now produce electricity from lactate

WELTEC BIOPOWER delivers two biogas plants to Japan

Waga Energy to deploy its break-through landfill renewable natural gas technology in Quebec

Scientists turn beer waste into new protein sources, biofuels

TIME AND SPACE
Report: U.S. military must speed up AI development to maintain edge

Softbank to buy $2.8 bn stake in Norway robotics firm

The ulti-mutt pet? Chinese tech company develops robo-dogs

High-ranking researcher resigns from Google AI team

TIME AND SPACE
US to invest heavily to boost offshore wind farms

TechnipFMC enters partnership with Magnora to develop floating offshore wind projects

Field study shows icing can cost wind turbines up to 80% of power production

BP enters UK offshore wind sector

TIME AND SPACE
Embattled Huawei plans push into smart-vehicle sector to survive

Intel to supply self-driving systems for delivery trucks

Tesla slams German bureaucracy, offers reform proposals

Uber entices drivers with $250 mn 'stimulus'

TIME AND SPACE
Phoenix receives contract from DOE for fusion energy technology

A new type of battery that can charge ten times faster than a lithium-ion battery created

New batteries give jolt to renewables, energy storage

Thermal power nanogenerator created without solid moving parts

TIME AND SPACE
UAE begins commercial operations of first Arab nuclear plant

BWXT awarded additional Nuclear Thermal Propulsion work for NASA

Framatome launches new subsidiary in Central Europe

New project to research nuclear decontamination robots

TIME AND SPACE
India holds out against pollution 'pressure' ahead of climate summits

IMF, World Bank begin push to swap debt relief for green projects

China's bitcoin mining rush risks derailing climate goals

How Biden's infrastructure plan addresses the climate crisis

TIME AND SPACE
Sharp increase in destruction of virgin forest in 2020

Japan sees earliest cherry blossoms on record as climate warms

Coffee waste can accelerate the recovery of tropical forests

Rich nation appetites driving tropical deforestation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.