Solar Energy News  
STELLAR CHEMISTRY
NuSTAR finds new clues to 'chameleon supernova'
by Staff Writers
Pasadena CA (JPL) Jan 25, 2017


This image from NASA's Chandra X-ray Observatory shows spiral galaxy NGC 7331, center, in a three-color X-ray image. Red, green and blue colors are used for low, medium and high-energy X-rays, respectively. An unusual supernova called SN 2014C has been spotted in this galaxy, indicated by the box. Image courtesy NASA/CXC/CIERA/R.Margutti et al. For a larger version of this image please go here.

"We're made of star stuff," astronomer Carl Sagan famously said. Nuclear reactions that happened in ancient stars generated much of the material that makes up our bodies, our planet and our solar system. When stars explode in violent deaths called supernovae, those newly formed elements escape and spread out in the universe.

One supernova in particular is challenging astronomers' models of how exploding stars distribute their elements. The supernova SN 2014C dramatically changed in appearance over the course of a year, apparently because it had thrown off a lot of material late in its life. This doesn't fit into any recognized category of how a stellar explosion should happen. To explain it, scientists must reconsider established ideas about how massive stars live out their lives before exploding.

"This 'chameleon supernova' may represent a new mechanism of how massive stars deliver elements created in their cores to the rest of the universe," said Raffaella Margutti, assistant professor of physics and astronomy at Northwestern University in Evanston, Illinois. Margutti led a study about supernova SN 2014C published this week in The Astrophysical Journal.

A supernova mystery
Astronomers classify exploding stars based on whether or not hydrogen is present in the event. While stars begin their lives with hydrogen fusing into helium, large stars nearing a supernova death have run out of hydrogen as fuel. Supernovae in which very little hydrogen is present are called "Type I." Those that do have an abundance of hydrogen, which are rarer, are called "Type II."

But SN 2014C, discovered in 2014 in a spiral galaxy about 36 million to 46 million light-years away, is different. By looking at it in optical wavelengths with various ground-based telescopes, astronomers concluded that SN 2014C had transformed itself from a Type I to a Type II supernova after its core collapsed, as reported in a 2015 study led by Dan Milisavljevic at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts.

Initial observations did not detect hydrogen, but, after about a year, it was clear that shock waves propagating from the explosion were hitting a shell of hydrogen-dominated material outside the star.

In the new study, NASA's NuSTAR (Nuclear Spectroscopic Telescope Array) satellite, with its unique ability to observe radiation in the hard X-ray energy range - the highest-energy X-rays - allowed scientists to watch how the temperature of electrons accelerated by the supernova shock changed over time. They used this measurement to estimate how fast the supernova expanded and how much material is in the external shell.

To create this shell, SN 2014C did something truly mysterious: it threw off a lot of material - mostly hydrogen, but also heavier elements - decades to centuries before exploding. In fact, the star ejected the equivalent of the mass of the sun. Normally, stars do not throw off material so late in their life.

"Expelling this material late in life is likely a way that stars give elements, which they produce during their lifetimes, back to their environment," said Margutti, a member of Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics.

NASA's Chandra and Swift observatories were also used to further paint the picture of the evolution of the supernova. The collection of observations showed that, surprisingly, the supernova brightened in X-rays after the initial explosion, demonstrating that there must be a shell of material, previously ejected by the star, that the shock waves had hit.

Challenging existing theories
Why would the star throw off so much hydrogen before exploding? One theory is that there is something missing in our understanding of the nuclear reactions that occur in the cores of massive, supernova-prone stars. Another possibility is that the star did not die alone - a companion star in a binary system may have influenced the life and unusual death of the progenitor of SN 2014C. This second theory fits with the observation that about seven out of 10 massive stars have companions.

The study suggests that astronomers should pay attention to the lives of massive stars in the centuries before they explode. Astronomers will also continue monitoring the aftermath of this perplexing supernova.

"The notion that a star could expel such a huge amount of matter in a short interval is completely new," said Fiona Harrison, NuSTAR principal investigator based at Caltech in Pasadena. "It is challenging our fundamental ideas about how massive stars evolve, and eventually explode, distributing the chemical elements necessary for life."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
NuSTAR at NASA
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Discovered one of the brightest distant galaxies so far known
Santa Cruz de Tenerife, Spain (SPX) Jan 24, 2017
An international team led by researchers from the Instituto de Astrofisica de Canarias (IAC) and the University of La Laguna (ULL) has discovered one of the brightest "non-active" galaxies in the early universe. Finding BG1429+1202 was made possible by the "help" of a massive elliptical galaxy along the line of sight to the object, which acted as a kind of lens, amplifying the brightness and dis ... read more


STELLAR CHEMISTRY
Populus dataset holds promise for biofuels, materials, metabolites

Handheld Sensor Unit Determines Biofuel Content Of Diesel Blends

Dual-purpose biofuel crops could extend production, increase profits

Iowa State engineer helps journal highlight how pyrolysis can advance the bioeconomy

STELLAR CHEMISTRY
NASA develops AI for future exploration of extraterrestrial subsurface oceans

Swarm of underwater robots mimics ocean life

Making AI systems that see the world as humans do

Researches replicate ocean life with swarm of underwater robots

STELLAR CHEMISTRY
Largest US offshore wind farm gets green light

Renewables a big boost for GE's profits

Essen, Germany wins greenest city honors

Obama puts offshore North Carolina on wind energy map

STELLAR CHEMISTRY
Paris experiments with driverless buses

Society set for head-on collision with driverless cars

New Zealand stimulates electric vehicle market

US closes probe into fatal Tesla autopilot crash, no defect found

STELLAR CHEMISTRY
Electrocatalysis can advance green transition

Harnessing the energy of fireworks for fuel

UNIST researchers get green light to commercialize metal-air batteries

Samsung blames Galaxy Note 7 fires on faulty batteriesW/LLL

STELLAR CHEMISTRY
Georges Besse II plant reaches full enrichment capacity

France takes key step towards closing ageing nuclear plant

New technique could lead to safer, more efficient uranium extraction

Treated carbon pulls radioactive elements from water

STELLAR CHEMISTRY
Iraq inks billion-dollar power plant deal with GE

China energy firm expands in crisis-hit Brazil

Europe to take up climate investment mantle

Australian energy group backs Li Ka-shing takeover

STELLAR CHEMISTRY
Forests 'held their breath' during global warming hiatus, research shows

Risk of tree species disappearing in central Africa 'a major concern,' say researchers

Trees supplement income for rural farmers in Africa

How much drought can a forest take?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.