Subscribe free to our newsletters via your
. Solar Energy News .




FLORA AND FAUNA
Of bugs and brains
by Staff Writers
Tucson AZ (SPX) Dec 26, 2014


Memory centers called mushroom bodies in the forebrain of a scorpion, revealed here by antibodies. Images courtesy left: Gabriella Wolff; right: Chip Hedgecock

Whether you're cramming for an exam or just trying to remember where you put your car keys, learning and memory are critical functions that we constantly employ in daily life.

It turns out that the structure and function of brain centers responsible for learning and memory in a wide range of invertebrate species may possibly share the same fundamental characteristics, according to a new study published in the journal Current Biology and performed by University of Arizona neuroscientists Nicholas Strausfeld, Regents' Professor in the Department of Neuroscience, part of the UA's School of Mind, Brain and Behavior, and Gabriella Wolff.

The brain centers in question are paired, lobed structures first discovered in insects and known as mushroom bodies. These centers occur in the forebrains of arthropods, as well as in marine worms and flatworms.

Because the commonalities between mushroom bodies in different species are so striking, there long has been a debate about whether these structures evolved independently or whether they derive from a common ancestor. Strausfeld's and Wolff's analysis revealed a ground pattern organization that is common to mushroom bodies in all of the investigated species, suggesting its inheritance from an ancient ancestor, possibly 600 million years in the past.

"This ground pattern of mushroom bodies is ubiquitous across a broad range of species," said Wolff, a graduate student in the Neuroscience Graduate Interdisciplinary Program. "If we wanted to emulate a learning and memory center in an artificial intelligence or a robot, this is where we would start."

Strausfeld and Wolff looked at both the neuroanatomy and chemical composition of mushroom bodies in numerous species belonging to two major groups of invertebrates: Ecdysozoa, which includes insects, crustaceans and other arthropods such as scorpions and horseshoe crabs; and Lophotrochozoa, which includes mollusks, flatworms and segmented worms.

Using a variety of chemical staining techniques, Strausfeld and Wolff were able to study and compare the neuroanatomy of different species in great detail. Not only were the characteristics of individual mushroom body neurons the same across species, their organization among each other was the same as well.

The researchers found that parallel bundles of neuronal fibers in the mushroom bodies in each species are arranged in similarly structured, orthogonal networks typical of learning circuits.

Next, the team analyzed protein expression in mushroom bodies. It found that the abundance of three proteins -- called DC0, Leo and CaMKII -- was conserved in the mushroom bodies across these invertebrate groups. Previous behavioral studies have shown that these proteins are necessary for learning and memory, and their genetic sequences are almost exactly the same in fruit flies and rats.

Remarkably, these same proteins also are thought to be critical for learning and memory in humans, and are implicated in neurological disorders such as Alzheimer's disease, Down syndrome and Angelman syndrome.

After the study on invertebrate brains, Strausfeld and Wolff will embark on investigating vertebrates such as rats, birds, reptiles, amphibians and fish.

"We hope to find out whether or not a similar ground pattern of organization occurs across the vertebrates, and whether that pattern also includes these highly abundant proteins," Strausfeld said. "The candidate that might possess this ground pattern is the hippocampus, which is crucial for memory of place, among other things.

"People may recoil at the idea that their brains share commonalities with arthropods and other invertebrates. The fact of the matter is that the organizational principles are the same. This should be of great interest to biomedical researchers."

According to Strausfeld, confirmation of this shared ground pattern in the vertebrate hippocampus would suggest that it originated from a very ancient common ancestor likely to have lived about 600 million years ago just before the Cambrian explosion, a relatively short period when most major animal phyla emerged.

This means it is possible that brain structures responsible for learning and memory in nearly all animals that possess them -- including humans, but with the possible exception of mollusks -- may have originated from one ancestor and have since undergone divergent evolution into centers of various complexity.

Next time you feel like swatting a fly, you might want to think twice.

"The correspondence across disparate groups of animals is extraordinary," Strausfeld said. "It's almost too good to be true."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Arizona
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FLORA AND FAUNA
Zimbabwe to export elephants in population curb
Harare (AFP) Dec 24, 2014
Wildlife authorities in Zimbabwe on Wednesday announced plans to export at least 62 elephants to top up scant state funding and curb a ballooning pachyderm population. "Zimbabwe got allocations from CITES (Convention on International Trade in Endangered Species) to export elephants to suitable destinations and one of the destinations is China," Jerry Gotora, chairman of the parks and wildlif ... read more


FLORA AND FAUNA
Guelph Researchers Recipe: Cook Farm Waste into Energy

Conversion process turns biomass 'waste' into lucrative chemical products

Central America's new coffee buzz: renewable energy

Boeing completes test flight with 'green diesel'

FLORA AND FAUNA
Robot named 'Athena' becomes first humanoid robot to pay for a seat on a flight

First steps for Hector the robot stick insect

Early adoption of robotic surgery leads to organ preservation for kidney cancer patients

New 'electronic skin' for prosthetics, robotics detects pressure from different directions

FLORA AND FAUNA
Panama makes climate splash with wind energy

China snaps up UK wind farms

Poland faces EU fines over renewable energy failures

Scotland claims leads in low-carbon agenda

FLORA AND FAUNA
Honda to recall almost 570,000 vehicles in China

Rice study fuels hope for natural gas cars

Google self-driving car prototype ready to try road

Dongfeng, Huawei partner for Internet-enabled cars

FLORA AND FAUNA
Chinese power companies pursue smart grids

NTU invents smart window that tints and powers itself

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel

New form of ice could help explore exciting avenues for energy production and storage

FLORA AND FAUNA
Belgium seeks to push back closure of two nuclear plants

S. Korea heightens cyber security watch on hacking

S. Korea says nuclear reactors safe after cyber-attacks

First UAE nuclear plant to start in 2017: official

FLORA AND FAUNA
How Climate Change Could Leave Cities in the Dark

The physics of champagne bubbles and our future energy needs

Global CO2 emissions increase to new all-time record, but growth is slowing

NYC owners should tap energy and economic benefits of cogeneration

FLORA AND FAUNA
Ecuador returning German money in environment row

Clearing rainforests distorts wind and water, packs climate wallop beyond carbon

Seeing the forest for the trees

NASA Study Shows 13-year Record of Drying Amazon Caused Vegetation Declines




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.